
ConcurrentWitness2Test:
Test-Harnessing the Power of Concurrency

(Competition Contribution)

Levente Bajczi ⋆(B), Zsófia Ádám , and Zoltán Micskei

Department of Measurement and Information Systems
Budapest University of Technology and Economics, Budapest, Hungary

bajczi@mit.bme.hu

Abstract. ConcurrentWitness2Test is a violation witness valida-
tor for concurrent software. Taking both nondeterminism of data and
interleaving-based nondeterminism into account, the tool aims to use
the metadata described in the violation witnesses to synthesize an ex-
ecutable test harness. While plagued by some initial challenges yet to
overcome, the validation performance of ConcurrentWitness2Test
corroborates the usefulness of the proposed approach.

Funding. This research was partially funded by the ÚNKP-23-{2,3}-I New National

Excellence Program; and the Doctoral Excellence Fellowship Programme (funded by

the NRDI Fund of Hungary and the BME University).

1 Validation Approach

There are multiple violation witness validators in the ReachSafety category of
SV-COMP that are based on test harness generation [3]. However, none take
part in the category for concurrent programs, presumably due to the increased
complexity in orchestrating the different thread interleavings prescribed by the
witness files. ConcurrentWitness2Test aims to fill this gap, by providing
an enhanced test harness that takes not only the data-nondeterminism into ac-
count, but also the nondeterminism caused by concurrency. In this paper we
concentrate on solving the latter, as the former is already well documented by
the implementing tools [3].

The current witness format for concurrent software defines two edge data
fields that we can extract information from [3]:

createThread: The unique ID of the new thread that results from the execution
of the containing edge

threadId: Which thread is currently active when the containing edge is exe-
cuted. Valid values have at least one createThread entry in the witness
automaton that must be executed prior to the current edge

⋆ Jury member representing ConcurrentWitness2Test at SV-COMP 2024.

https://orcid.org/0000-0002-6551-5860
https://orcid.org/0000-0003-2354-1750
https://orcid.org/0000-0003-1846-261X

2 L. Bajczi et al.

line: 1
threadID: 1

line: 1
threadID: 2

line: 2
threadID: 1

Fig. 1: Witness

Thread 1:

yield(0);
1 a = 0 ;

release(0);
yield(2);

2 a s s e r t (a == 0) ;
release(2);

Thread 2:

yield(1);
1 a = 1 ;

release(1);

Fig. 2: Source

lock()

current >= targetyes no

unlock() broadcast()

wait()

yes
current < targetno

unlock()

Fig. 3: yield(target)

lock()

current >= targetyes no

unlock() current++

broadcast()

unlock()

Fig. 4: release(target)

Using these pieces of information, we insert a yield and release call around
each action (as seen in the example in Figure 2, based on the metadata from Fig-
ure 1), with the parameter target increasing at every encountered edge. These
functions are shown in Figure 3 and Figure 4, respectively. They rely on a shared
variable current denoting the next value where the functions need to take effect
(to handle revisited locations in the source, e.g., in a loop), alongside a mutex
and a condition variable. Locking and unlocking in the figures refer to operations
on the mutex variable; while broadcasting and waiting refer to operations on the
condition variable.

One of the main obstacles to overcome is the resolution of the threadID

metadata. In our experience, none of the tools produce fully specified witnesses
in terms of interleavings, i.e., not every action is totally ordered in the program.
While this is acceptable according to the witness format [3], a certain level
of nondeterminism might remain in the program after applying the witness.
To overcome this problem we rely on statistics, i.e., we execute the resulting
harness multiple times, and classify the results as always observable, sometimes
observable and never observable. Observability refers to that of the error state,
tested by inspecting the exit code of the program. At SV-COMP’24 we opted to
only refuse witnesses with never observable verdicts.

2 Software Architecture

ConcurrentWitness2Test is a Python project, relying on pycparser1 for
parsing C files, and networkx2 for parsing GraphML-based witnesses. As op-
posed to the harness-only solutions of other witness-to-test validators [3], Con-

1 https://github.com/eliben/pycparser
2 https://networkx.org/

https://github.com/eliben/pycparser
https://networkx.org/

ConcurrentWitness2Test 3

pycparser

Parse C

Parse witness

networkx

Patch AST

Create harness

Compile gcc

Execute

�/?/�
Verdict

ConcurrentWitness2Test
.c

.cex

Fig. 5: Architecture of ConcurrentWitness2Test

currentWitness2Test also needs to modify the AST of the C file to insert
the function calls to yield and release, therefore the intermediate output of
ConcurrentWitness2Test consists of a patched C file and a separate test
harness. We use gcc3 to compile these resulting files to an executable. We run
this executable at most 100 times, with an option for early termination if the
error becomes observable. See Figure 5 for an overview of this workflow.

3 Discussion of Strengths and Weaknesses of the
Approach

As seen in Table 14, ConcurrentWitness2Test lacks support for some tools’
witnesses. Since then, this limitation has been mostly rectified, but not in time
for SV-COMP. The main shortcoming of the competition version of Concur-
rentWitness2Test was the handling of cases where edge attributes were given
for complex syntactic elements, such as loops, and we tried to insert the func-
tion calls into the heads of loops instead of their body. This was an easy fix,
and we hope to further the support for various tools even more for next year’s
SV-COMP.

Despite these temporary shortcomings, ConcurrentWitness2Test still
correctly confirmed 1197 results[2]. In contrast, the validator was wrong only 239
times: 2 witnesses were confirmed and 237 witnesses were refused erroneously5.
These numbers highlight the strength of our approach.

We also note that ConcurrentWitness2Test confirmed 932 results with
only a sometimes observable verdict. This means that multiple tools produce
nondeterministic witnesses, where some interleaving leads the execution to an
error state, but not all. We suggest tool developers to concentrate on providing
better, deterministic witnesses in order for their results to always be validated.
We will aim to constrain our acceptance criteria to always observable in future
competitions.

3 https://gcc.gnu.org/
4 Unofficial results, since no official results were published at the time of writing.
5 Here, erroneous covers all cases when the tool could not reproduce the bug. There-
fore, this might not be our tool’s shortcoming, but the result of bad witnesses.

https://gcc.gnu.org/

4 L. Bajczi et al.

Table 1: Results per supported tool, results for wrong verdicts in parentheses

D
a
r
t
a
g
n
a
n

D
iv
in
e

T
h
e
t
a

U
A
u
t
o
m
iz
e
r

U
G
e
m
C
u
t
t
e
r

U
T
a
ip
a
n

Confirmed 178 179 (2) 191 186 235 228
Refused 79 25 (1) 8 74 22 29

Error 193 111 96 168 194 170

4 Tool Setup and Configuration

The binary archive available at Zenodo [1] contains all required dependencies in
the form a virtual environment except for the python 3 interpreter, which needs
to be installed separately (e.g., via the python3 package on Ubuntu 22.04).

The tool can be started either directly via the main.py file, or the convenience
script in start.sh. Either way, the tool expects two inputs: an argument provid-
ing the (preprocessed) C file, and the witness file with the --witness <file>

flag. Upon success, the tool always outputs a single line starting with the string
Verdict:, with the verdict SOMETIMES/ALWAYS/NEVER directly afterward. Some
handled exceptions also appear as verdicts.

Up-to-date badges on verification tool support can be seen on the main
GitHub page6. Tool support has been significantly enhanced since the version
nominated for the competition, in preparation for next year’s SV-COMP, and
for tools to use that may want to improve their witnesses in the meantime.

5 Software Project and Data Availability

ConcurrentWitness2Test is a validation tool maintained by the Critical
Systems Research Group7 of the Budapest University of Technology and Eco-
nomics. The project is available open-source on GitHub8 under an Apache 2.0
license. The version (1.0.0) used in the competition is available at [1].

References

1. Bajczi, L., Ádám, Z., Micskei, Z.: ConcurrentWitness2Test - SV-COMP’24 Validator
Archive (Nov 2023). https://doi.org/10.5281/zenodo.10184336

2. Beyer, D.: State of the art in software verification and witness validation: SV-COMP
2024. In: Proc. TACAS. LNCS , Springer (2024)

6 https://github.com/ftsrg/ConcurrentWitness2Test#tool-support
7 https://ftsrg.mit.bme.hu/en/
8 https://github.com/ftsrg/ConcurrentWitness2Test

https://doi.org/10.5281/zenodo.10184336
https://github.com/ftsrg/ConcurrentWitness2Test#tool-support
https://ftsrg.mit.bme.hu/en/
https://github.com/ftsrg/ConcurrentWitness2Test

ConcurrentWitness2Test 5

3. Beyer, D., Dangl, M., Lemberger, T., Tautschnig, M.: Tests from witnesses -
execution-based validation of verification results. In: Dubois, C., Wolff, B. (eds.)
Tests and Proofs - 12th International Conference, TAP@STAF 2018, Toulouse,
France, June 27-29, 2018, Proceedings. Lecture Notes in Computer Science, vol.
10889, pp. 3–23. Springer (2018). https://doi.org/10.1007/978-3-319-92994-1 1

https://doi.org/10.1007/978-3-319-92994-1_1

	ConcurrentWitness2Test:Test-Harnessing the Power of Concurrency(Competition Contribution)

