
NetworCat: Applying Analysis Techniques of

Shared Memory Software on Message-Passing

Distributed Systems

Levente Bajczi 1* and Vince Molnár 1*

1*Department of Artificial Intelligence and Systems Engineering,
Budapest University of Technology and Economics, 2, Magyar tudósok

körútja, Budapest, 1117, Hungary.

*Corresponding author(s). E-mail(s): molnar.vince@vik.bme.hu;

Abstract

Communication models are a key aspect in the design and implementation of
distributed system architectures. Application logic must consider the guarantees
of these models, which fundamentally influence its correctness. Modern multi-
core processor architectures face a similar problem when it comes to accessing
shared memory: the guarantees of an architecture have a fundamental impact on
the observable behavior of software. The formalization of these guarantees in a
declarative way has led to powerful tools and algorithms to define reusable con-
straints on patterns of memory access events and their relationships, enabling
the efficient description and automatic formal analysis of software properties
with respect to a specific architecture. The Cat memory modeling language pro-
vides a standard means of specifying these constraints. Despite the parallels, the
axiomatic modeling and analysis of communication models in distributed sys-
tems remain a relatively unexplored area. In this paper, we address this gap
and demonstrate how communication models can be mapped to the Cat lan-
guage. We create a standard library of reusable patterns and demonstrate our
approach, called NetworCat, on the simple examples of UDP and TCP, and we
also present its applicability to the vastly configurable OMG-DDS service. This
adaptation-based approach enables the use of ever-improving verification tools
built for shared memory concurrency on distributed systems. We believe this not
only benefits distributed system analyses by broadening the toolset for verifica-
tion but also positively impacts the field of memory-model-aware verification by
widening its audience to another domain.

Keywords: distributed systems, systems modeling, formal verification, cat, OMG-DDS

1

http://orcid.org/0000-0002-6551-5860
http://orcid.org/0000-0002-8204-7595

1 Introduction

Efficient formal verification and modeling of distributed systems and applications has
long been a primary target of formal methods research [1–5]. In addition to the highly
concurrent, asynchronous setting, these applications generally rely on stacks of com-
plicated communication models that aim to compensate for unreliable communication
channels.

The complexity of these models is often on par with the application implemented
on top of them – directly encoding their operational semantics together with the
application is, therefore, impractical. A common practice is to verify that models
indeed fulfill their guarantees, then verify the distributed application modulo these
guarantees. Furthermore, components of the system can sometimes be analyzed in
isolation, composing the results of these smaller sub-problems into a verdict [2, 6].

1.1 Analysis of Distributed Systems

An idea that systems could be decomposed into communicating components, which
in turn can be defined and analyzed with relative ease, led to the creation of process
algebras [7–9]. Process algebras enable the system designer to specify sequential and
parallel composition of components, along with message-based communications and
synchronizations between them.

One downside of process algebras is their “imperative” approach to specifying
component behavior when the communicational model is more complex than a sim-
ple synchronous message-passing action (e.g., retransmission or lossy sending of data
necessitates either ghost participants or duplication of actions)1. In this work, we aim
to decouple the semantics from the execution model, thus allowing the analysis of a sys-
tem with respect to many different execution models. There has been substantial work
on moving towards a declarative approach for communication models in distributed
algorithms [1, 4, 5, 10], which proved successful in finding previously unknown bugs
in distributed models and algorithms. Furthermore, there are other approaches such
as TLA+ [11], IronFleet [12], EventML [13], Verdi [14] or Disel [15], which provide
frameworks and languages for the analysis of distributed systems.

However, most of such works rely on a well-established communication link among
the components, at best distinguishing between synchronous and asynchronous chan-
nels and considering complete channel failures [4]. In some exceptions to this, the
semantics of channels were encoded as a separate communication model using custom
extensions to the declarative specification framework (such as Datalog or Network
Datalog) used to model the distributed algorithms themselves [3, 16]. The granularity
of the proposed specification languages is usually low, capturing only simple properties
such as channel failure (message loss), duplication, and delays.

1.2 Similarities to Weak Memory Verification

During the last decade, a similar direction has been emerging in the field of multi-
core processor architectures [17]. Modern CPUs are themselves small systems with

1There are extensions to this model, but we liken them more to the other declarative approaches rather
than process calculi.

2

multiple components, including the computation cores, various controllers, caches, and
even software components like the operating system. The complex interplay between
these subsystems and the external physical memory results in similar complexity as
in distributed systems.

In order to improve the speed and efficiency of memory operations, modern CPUs
– like many communication models – also relax some of the usual guarantees when
accessing shared memory. This can lead to “exotic” executions that many programmers
would find unexpected, like the reordering of memory operations. The exact way the
usual guarantees are relaxed depends on the architecture and is described by amemory
model [17].

Historically, memory models were not defined explicitly [18]. Chip vendors usually
gave a textual description of the intended behavior or the outline of the underlying
architecture, and sometimes a few demonstrative examples called litmus tests [18]. The
need for a more precise description of what is allowed in a certain architecture has led
to the development of axiomatic memory models and the Cat language, along with a
set of tools to simulate litmus tests on a given architecture [19]. Soon after, the first
software verification tools that handle these axiomatic descriptions as a parameter
followed as well [20, 21].

1.3 Goals of this Paper

This work has been born out of the recognition that the modeling and verification
of distributed systems modulo communication models, and parallel programs modulo
memory models share a large number of similar challenges. According to our observa-
tion, the highly advanced and dynamically improving solutions of the shared memory
domain have not yet found their way into the distributed systems domain, even though
many of the techniques and even the tools themselves would be suitable to solve both
kinds of problems. Of course, everybody has at least some intuition of the relationship
between those two fields (e.g., a reverse transformation has been shown in [22]), but the
point of this paper is to formalize this intuition and to adapt tools from shared-memory
to work with message-passing distributed systems. Our solution is called Networ-
Cat, and it includes a minor extension of the Cat language as well as a set of standard
primitives to declaratively model the functional aspects of communication models. We
hope that our work will facilitate the application of the newest results of the software
verification community in the functional verification of distributed applications.

To this end, the paper will introduce the reader to the basics of shared memory
modeling and analysis in Section 2; lay the foundations of how to model axiomatic
semantics for message-based communication in Section 3; define and present a
standard library of axiomatic constraints as primitives to declaratively model the func-
tional aspects of communication models in Section 4; demonstrate the applicability of
the concept and the standard library in the context of two common communication
models (UDP and TCP) as well as a complex industrial middleware (OMG-DDS) in
Section 5; then conclude in Section 6. The paper is accompanied by a small tool2 to

2http://ftsrg.mit.bme.hu/networcat/

3

http://ftsrg.mit.bme.hu/networcat/

x := 0,y := 0

x := 1 i := y
y := 1 j := x

(2w2r)

x := 0,y := 0

x := 1 y := 1
i := y j := x

(wrwr)

Fig. 1: Programs showcasing the differences between various memory models

demonstrate how NetworCat can be used with the Herd tool [23]. The demonstra-
tional programs and models used in the context of this work have been published as
loadable, read-to-try examples in our proof-of-concept tool.

2 Analysis of Shared Memory Software

In this Section, we introduce the core concepts of memory modeling and their opera-
tional and axiomatic semantics, as well as three common families of memory models
to showcase the common constraints and rules of the models.

2.1 Memory Models

Consider a simple two-threaded program (2w2r in Figure 1), where one thread writes
variables x then y, and the other reads them back in reverse order.

Here, the initial values in memory are depicted in the first line using assignments
to variables, while the threads of the program are divided by vertical lines. The order
of the instructions on any given thread follows their respective order in the source
code of the program.

Assuming no further synchronization among the threads, the intuitive set of pos-
sible outcomes for (i, j) include (0, 0) and (1, 1) when either of the two threads runs
before the other, and (0, 1) when the second thread starts reading between the two
Write instructions. We could naively say that (1, 0) is never possible because for that,
the Write to y had to have finished before the Read from y did, while delaying the
Write to x after the Read from x, yet still ordering it before the Write to y based on
the instruction order. Therefore, the first instruction should happen before itself. It is
easy to conclude that such an execution is impossible.

If we look at the above-described execution for (1, 0) on an execution graph in
Figure 2a, we can see this happens-before loop. An execution graph is a directed and
labeled graph, where nodes are memory accesses (reads and writes), and edges show
relations among these accesses. In Figure 2a, the rf (read-from3) edges denote data
flowing from Write operations to Read operations, and the po (program order) edges
show the instruction order in the program.4 In addition, the fr (from-read5) edge is
also added to show that a Write has to be ordered after a Read , because the Read
received an older value; hence the write’s effect is not yet visible.

If we follow the edges starting from x := 1, the loop is clearly visible through
the po, rf , po and fr edge sequence. As we assume that all these relations denote a

3“Read” in past participle, denoting where the value has been read from.
4We can say an operation is po-before another operation (or po-previous) when there is a directed path

labeled with po between the two.
5“Read” as a noun denoting the operation, i.e., we know from the Read operation that we have an

implicit ordering constraint.

4

happens-before relation (i.e., the target instruction (of the relation) happening after
the source) – which is a transitive property – x := 1 should happen before x := 1.
Based on our reasoning so far, this execution is never observed when running on actual
hardware.

However, should we run this small program (also called litmus test) on some actual
multicore architecture, we may very well find that the outcome (i, j) = (1, 0) will occur.
This does not contradict the visualized relationships in Figure 2a, but it seems some
of them are not ordering constraints on real hardware. Indeed, the hardware executing
the test has an associated memory model, which will govern which execution patterns
are allowed or forbidden. For example, a sequentially consistent memory model (SC)
would not allow this execution to happen, as it ensures that all the relations introduced
so far are indeed treated as happens-before relations and, therefore, should be respected
by any valid execution.

Memory models can be approached either based on operational semantics or
axiomatic semantics. The former is useful in terms of understanding why memory
models are so complex (and why we need them in the first place), and the latter can
be efficiently utilized for reasoning about the observable outcomes when applying a
memory model to a problem. We will now introduce three common families of mem-
ory models based on their operational semantics: sequential consistency, total store
ordering, and weak memory.

2.1.1 Sequential Consistency (SC)

The operational semantics of a memory model describes the steps the hardware-
software system will take when presented with an input program such as 2w2r. In
this view, the easiest memory model to describe is sequential consistency (SC), the
strictest memory model when it comes to restricting the number of observable out-
comes. In this model, the system will loop through the following steps (let T be the
pool of threads in a program, and PC(t) the program counter for thread t ∈ T):

1. Choose a thread t ∈ T , load instruction i at PC(t)
2. Load the inputs to instruction i from memory
3. Execute instruction i
4. Write the output of instruction i to memory

While this model is certainly easy to understand from the programmer’s point of view,
it is very wasteful of CPU cycles. Steps 2 and 4 both have to access the main memory,
which is potentially orders of magnitude slower than just using values already in the
CPU’s register. For loading the data (step 2), caching might be useful, which makes the
step significantly shorter (when no cache miss occurs). However, writing to the main
memory (step 4) has to invalidate caches in all threads, which is again complicated
and slow. Without invalidation, the value is not visible to other threads, and hence a
successive load on another core would return an older value.

2.1.2 Total Store Ordering (TSO)

To further improve performance, in addition to caching, the strict rule of waiting for
Writes to finish can also be relaxed (hence, getting a relaxed memory model). A store

5

x := 1

y := 1

i := y

j := x

x := 0 y := 0

po po

po po

rf

rf

fr

(a) 2w2r

x := 1

i := y

y := 1

j := x

x := 0 y := 0

po rf fr

ppo ppo

(b) wrwr

x := 1

y := 1

i := y

j := x

x := 0 y := 0

po rf fr

ppo ppo

ppo ppo

(c) 2w2r

x := 1

y := 1

i := y

j := x

x := 0 y := 0

po rf fr ppo

(d) 2w2r

x := 1

y := 1

i := y

j := x

x := 0 y := 0

po rf fr

(e) 2w2r

Fig. 2: Execution graphs of programs

buffer can be introduced to the architecture, where step 4 can place its value imme-
diately after execution, and some other mechanism in the architecture will propagate
it to caches and eventually to main memory. This will introduce the above-mentioned
“anomaly” where other threads will see the value later than with SC. To showcase the
impact of this change, see wrwr.

Considering a round-robin scheduling, x := 1 and y := 1 would go first in some
order, both putting a new value (1) to a store buffer associated with x and y, respec-
tively. However, it is not guaranteed that these values are propagated to shared
memory before running the next two instructions, i := y and j := x, which will be
able to read the old values (0). This execution is summarized in Figure 2b, with vis-
ible fr edges to denote Writes which should be ordered later than respective Reads,
because at the time of reading the value an older Write was still in effect. If all rela-
tions denote a happens-before notion, this execution should not be observable either,
as there is a loop among the edges: x := 1 should happen before itself here as well.
The solution to this problem is recognizing the po edge in itself does not define a
total order, as store buffering will enable Writes to succeed without the global shared
memory (and hence, the view of the reading thread) changing.

To show which po edges to consider in the ordering by a certain architecture (via its
abstraction as a memory model), the ppo (preserved program-order) edges are added
to the graph. This relation may be seen as a filtered po relation, which relaxes the
strict ordering of sequential consistency.

This behavior is unintuitive for many reasons, and programmers without deep
knowledge about the architecture rarely take such behaviors into account, which might

6

lead to hard-to-find bugs. However, such architectures are very prevalent, with one
of the most used examples being the total store ordering (TSO) architecture of Intel
CPUs. Due to store buffering, po edges between Writes and successive Reads on the
same thread do not imply a happens-before relation, as these Reads can be performed
before the completion of the Write (before the value is written to the main memory).
This means that we will have a ppo edge for every po edge that does not go from a
Write to a successive Read – hence the filtered view.

It is important to note that generally, all implemented memory models intend6

to preserve ordering of same-variable memory accesses, so relaxation only matters for
foreign-address instruction pairs.

Going back to 2w2r, the execution shown in Figure 2a is still not observable over
TSO. Figure 2c showing the ppo edges explains this phenomenon – we have a ppo
edge for all po edges, because none of them leads from a Write to a successive Read .
Therefore, the happens-before loop that prevents the realization of this execution still
exists.

2.1.3 Weak Memory

Even though TSO already makes unintuitive executions possible, there are even more
relaxed (weaker) memory models. For example, ARM uses a form of weak memory
model that allows any non-dependent instructions to be reordered, effectively shrinking
the size of ppo to only include edges between dependent instructions.

Note that dependency in this context is a generic term to denote any relationship
where the output of an instruction influences the behavior of another later on. Such
dependencies include Writes and loads with the same variable, or loading a value and
then loading another using the first result as an address, etc.

Over weak memory, 2w2r will only include ppo edges starting in the initial Writes
(see Figure 2d). Without considering po edges between non-initial instructions as
happens-before relations, the execution resulting in (1, 0) is now allowed by the memory
model.

2.2 Declarative Semantics

So far, we have explained widely used memory models via their operational semantics
(i.e., the steps an architecture will go through when executing an instruction). Real
memory models are usually so complex that a full operational specification would be
very hard to read. For example, the RISC-V ISA defines the RVWMO (RISC-V Weak
Memory Ordering) model as the least strict model an implementation might use [24].
As RISC-V permits open-source hardware implementations for its adopters, one may
be able to see the source of the entire memory subsystem in such implementations.
While such a description could be used to co-simulate with programs and analyze the
precise behavior of parallel programs, the complexity of the architectures would make
this prohibitively resource-intensive.

6One of the main goals of memory modeling is to be able to verify that the hardware complies with these
kinds of specifications[19].

7

A better option is to use the axiomatic semantics of memory models to provide
a specification. In this semantics, the concept of the shared memory (and auxiliary
hardware components, such as caches) is omitted, and rather, memory accesses will
be handled as events, whose exact behavior and side effects depend on the memory
model.

Notice that execution graphs say nothing about the exact scheduling of threads,
only denoting (possibly order-enforcing) relations when necessary. Most of these rela-
tions explain why a specific execution may or may not be observable, but the outcome
of the execution itself is determined only by the executed instructions and the rf edges,
which denote data-flow (as opposed to inferred ordering constraints only). Therefore,
the analysis of a program must focus on what instructions can be executed with what
data-flows – while respecting the constraints implied by all the other relations. There-
fore, in the axiomatic semantics, memory models describe constraints on the rf relation
based on the static and dynamically inferred relations implied by the program. Static,
in this sense, means relations such as po, which are directly mapped from elements in
the program source.

2.3 The CAT Specification Language

The most popular specification language for axiomatic memory models is Cat [25].
Using event sets and relations over events, the possible rf relations are restricted using
constraints. Any number of event sets and relations may be defined using operations
over other elements or primitives, but there are a few built-in basic event sets and
relations that are grounded in the input program’s source (the static relations men-
tioned above). Furthermore, deduced elements may be defined using operations over
other elements. These elements and operations include the listed items in Figure 3
and Figure 4. Most of these operations (or derivation rules, as new event sets or rela-
tions may be derived with such operations) are self-explanatory as they stem from set
theory. A notable exception may be the sequence operation, which has the following
definition: (e1, e2) ∈ a ∧ (e2, e3) ∈ b =⇒ (e1, e3) ∈ (a; b).

So far, memory models have been introduced to solve problems where, given an
input program and memory model, the task is to determine what executions are
allowed. Notice, however, that some pre-defined elements do not make sense when con-
sidering programs as inputs – namely, the FW (final writes), co (coherence order, i.e.,
global order of same-variable write events), and rf (read-from). These are properties
of an execution, rather than the input program. This is a deliberate choice of Cat,
as the semantics of the language is given for validating candidate executions, rather
than generating consistent executions with a memory model. Candidate executions are
execution graphs to be checked for consistency with a memory model during the explo-
ration of possible executions. Then, tools consuming the memory model described
using Cat are capable of checking whether the execution is consistent (and therefore
observable when the program is executed) or inconsistent and therefore forbidden.

To validate the consistency of candidate executions, Cat allows the declaration
of certain kinds of constraints. These act on event sets and relations, and may be
of the following kinds: (a)cyclic (relations), (ir)reflexive (relations) and (non-)empty

8

W All Write events
IW Initial Write events
R Read events
M All memory events (R ∪ W)
F Fence events

∼a Complement
a | b Union
a & b Intersection
a \ b Difference
a * b Cartesian product

Fig. 3: Event sets and derivation rules from events sets

po Instruction order
amo Atomic read-modify-write
id Identity relation
loc Same-variable relation
int Same-thread relation
rf Dataflow (Write-to-Read)
co Coherence order of writes

a+ Transitive closure
a* Reflexive-transitive closure
aˆ-1 Relation inversion
a? Reflexive closure
∼a Complement
a | b Union
a ; b Sequence
a & b Intersection
a \ b Difference
dom Domain of a relation
range Range of a relation

Fig. 4: (Binary) relations over events and derivation rules from relations

<CAT> ::= <assert> ∥ <let> ∥ <CAT> <CAT>
<assert> ::= acyclic <rel> ∥ irreflexive <rel> ∥ empty <rel>
<rel> ::= <named-rel> ∥ dom(<rel>) ∥ range(<rel>) ∥

<rel>? ∥ <rel> | <rel> ∥ <rel> & <rel> ∥
<rel> \ <rel> ∥ <rel>ˆ-1 ∥ <rel>+ ∥
<rel>* ∥ <rel>; <rel> ∥ <evt> * <evt>

<evt> ::= <named-evt> ∥ ∼ <evt> ∥ <evt> | <evt> ∥
<evt> & <evt> ∥ <evt> \ <evt>

<let> ::= let <id> = <rel> ∥ let <id> = <evt>
<named-rel> ::= po ∥ amo ∥ id ∥ loc ∥ int ∥ rf ∥ co ∥ <id>
<named-evt> ::= M ∥ W ∥ R ∥ IW ∥ F ∥ <id>

Fig. 5: Cat syntax (simplified)

(relations or event sets). For example, to realize sequential consistency, the acyclicity
of the happens-before relations (fr , po, rf , co) can be asserted:

acyclic (po | co | rf | fr)

When applied to the execution in Figure 2e, the thick cycle consisting of the relations
is detected, and therefore this candidate execution is discarded.

The core concrete syntax of Cat is summarized in Figure 5. The full language
specification (including language elements not utilized in the current work) and the
precise semantics can be found in [25].

2.4 Analysis Tools

For shared memory concurrency, various tools exist that can analyze a program
together with a memory model and answer queries on their exhibited properties (e.g.,
error state reachability). The historically most significant tool is most probably Herd

9

[17], which enabled rigorous analysis of litmus test behavior, thus validating the idea
of axiomatic modeling and analysis of memory-model-aware software.

2.4.1 Herd

Herd is a memory model simulator [17]. It expects a memory model specification
written in the CAT language [25] and a litmus test.

For a given memory model and litmus test, the question is whether the forbid-
den behavior is observable on the target architecture. To answer this question, Herd
will first generate all candidate executions of the litmus test. This is done in an enu-
merative way: for each primitive relation, every semantically correct combination will
be explored [17]. After enumeration, the candidate executions are filtered based on
whether they are consistent with the specified memory model. If any consistent execu-
tion graph of the litmus test produces the forbidden outcome, the specified behavior
is observable and the litmus test fails.

The number of candidate executions is generally much higher than the number of
consistent executions, especially for larger programs. However, the goal of Herd is not
general program verification but rather architectural verification. Litmus tests are, by
definition, small programs, and therefore it is unnecessary to optimize the algorithm
in Herd for input size. For anything larger than an ordinary litmus test, Herd will
most likely time out while enumerating the candidate executions. This prompted the
development of smarter candidate execution generation, such as rcmc [26].

2.4.2 RCMC

The novelty of rcmc is its smart exploration algorithm. In each step of its algo-
rithm, rcmc will only generate consistent execution graphs, and no execution graph
is ever explored twice. The implemented stateless model checking algorithm receives
a concurrent C/C++ program with optional assertions, and enumerates all consistent
executions as its output. If in any of the execution graphs the assertion is violated, or a
non-atomic concurrent access occurs, the tool reports the program as unsafe immedi-
ately. Note that the memory model is not an input, as the C/C++ concurrency model
(as formalized in the repaired RC11 memory model [27]) is hard-coded into the algo-
rithm. This significantly reduces the applicability of the tool for custom architectures
and potentially yields false positive results.

2.4.3 GenMC

As an improvement to Rcmc, GenMC promises to deliver a memory model-aware,
stateless model checking algorithm. This enables the verification of software running
on custom memory models with an approach very close to that of Rcmc. However,
the boundedness of the algorithm is still a considerable drawback (as it is with Rcmc
as well).

2.4.4 Dartagnan

Most of the concerns above are addressed by Dartagnan, a bounded model checker
that uses memory models as modules [21, 28]. Dartagnan expects a concurrent

10

program and a memory model as inputs, and using the conjunction of SMT-encoded
expressions determines whether an unsafe state is reachable within a given bound. To
achieve this, Dartagnan unrolls and encodes the concurrent program as an SMT-
expression; encodes the unsafe state as another SMT-expression; and encodes the input
memory model as an SMT-expression. If the conjunction of the expressions above
is satisfiable, the unsafe state is reachable, and therefore, the concurrent program is
unsafe.

Dartagnan is a software verification tool, complete with an integration to Smack
[29], an LLVM-based program transformation tool that allows Dartagnan to work
on formal models rather than source-level programs. The gap between the higher-
level LLVM-IR and the ISA of the target architecture is bridged by using compiler
mappings for translating e.g. memory ordering primitives [21]. This is a conventional
procedure [19], but special attention has to be paid to ensure the compiler mappings
represent an actual compiler’s behavior that might be used to compile the examined
program later on.

In comparison with Herd and rcmc, Dartagnan (and its companion tool,
Porthos [21]) is not capable of enumerating consistent executions. Even though as a
reachability checker, Dartagnan is not expected to provide this feature, it could be
useful to provide a way to use the tools embedded into other verification algorithms
for handling concurrent parts of an otherwise independent set of threads. In this case,
an unsafe state might not only be dependent on the concurrent parts of the program,
and therefore Dartagnan could not handle it on its own.

As shown in the sections above, many practically proven tools and algorithms exist
to verify shared memory software with weak memory semantics. Our goal in this paper
is to bring these tools to distributed systems as well – hopefully without the tools’
developers ever needing to modify their source code. Thus, shared memory verification
tools could benefit from a wider audience and user base, while the domain of dis-
tributed system verification could benefit from this ever-improving litany of analysis
methods.

3 Modeling Message-Based Communication in CAT

As discussed in Section 2, the axiomatic semantics for concurrency relies on connecting
Read events to value-supplying Writes via the rf relation. This completely eliminates
the need to use the state of the shared memory to reason about possible executions of
programs, instead focusing on the possible data flow links between instructions. The
state of the execution is, therefore, implicitly captured in the graph.

As long as there are clearly defined operations that can be interpreted as Write
and Read events in the sense that one provides data to the other, we can use the
techniques developed for concurrent software to model and analyze the functional
aspects of other types of parallel systems as well. Note that these techniques do not
aim to cover timing and other quantitative aspects – the goal is to formally prove
the correctness (e.g., fulfillment of some safety properties) of a parallel system with
respect to a chosen ruleset governing the interaction of parallel components.

11

In this paper, we apply these techniques to distributed systems using models of
communication with Receive and Send operations, where Receive events will be related
with Send events to model inter-node communication. While these operations roughly
map to Reads and Writes, there are some fundamental differences in modeling the
two kinds of communication models.

3.1 Modeling Send and Receive Semantics in Cat

We assume that participants using the communicational model (i.e., software instances
enabled to communicate with each other) are connected to some common network and
can either:

1. Address each other (thus being able to Send and Receive directed messages, possibly
via scoped or named channels), or

2. Address some scoped or named network resource or shared variable (thus being
able to Publish and Subscribe to Topics).

An example of the former might be a point-to-point message-passing model, such
as sending IP packets to each other with a channel name that can be used as a filter.
An example of the latter might be a publish-subscribe middleware such as Message
Queue Telemetry Transport (MQTT) [30] or Data Distribution Service (OMG-DDS)
[31]. See Section 5.3 for more detail on the latter.

Most of the differences stem from Receives not being able to always acquire a value,
as opposed to Reads, where eventual access to a value is always provided (because
operationally, it just needs to read a value from memory, which is never inaccessible).
Furthermore, no initial implicit Send event (analogously to initialWrite events) should
exist in a network setting because the channels start empty. This is important to
distinguish because in some communicational models, Receive operations will block on
an empty channel instead of returning a default value. There is a similar problem with
Send events, because they may need to get an acknowledgment message from a Receive
operation (depending on the underlying protocol) – therefore, they might have to wait
until another participant becomes ready to communicate. This also invalidates the
expectation we had for Write operations (i.e., they will always be able to store a value
in memory, even with no future potential readers present), because Send operations
can also block.

For the latter problem (i.e., a Send not succeeding if no suitable participant is
available), partial support already exists inCat. An example of such an instruction can
be observed in the ARM ISA for load-exclusive and store-exclusive operations [17, 25].
In that case, depending on the behavior of other threads, a store might fail, i.e., not
commit anything to memory. We can leverage a similar mechanism for disallowing
Sends to succeed without a partnering Read , should the communicational model we
are utilizing require this behavior.

However, the former problems (i.e., a Receive not being able to read a value when
no suitable Sends exist, and disallowing initial Sends) require one of two solutions:

12

1. We forbid reading from the initial Send events7, and we forfeit the implicit expecta-
tion of Cat (and verification tools built withCat in mind) that a Receive must have
an associated rf -edge in all consistent executions (to allow non-blocking Receives);
or

2. We allow reading from the initial Send events, but assign the special meaning to
such rf -edges that the Receive did not actually receive a value from any participant
(e.g., used a default value as its output).

As it would be impractical to have multiple interpretations of a language, we do
not deviate from the defined semantics of Cat, and opt to use the 2nd option.

With this slightly modified semantics for Read and Write events we successfully
mapped Send and Receive operations to aspects of conventional concurrent program-
ming. However, as discussed in Section 2, memory models need to have access to
information on the locality of events, i.e., the variables which Writes and Reads oper-
ate on. In the case of Send and Receive operations, however, messages may be passed
without any explicit definition of locality: if a sender can connect to a receiver, it will
be able to send a message. Furthermore, in many cases, a sender will have an intended
receiver it tries to send data to, instead of storing a value in memory for all future
readers to see. Therefore, the aforementioned same-variable (loc) predicate will have
to be reinterpreted:

• If a Send event could in theory supply data to a Receive event, their locality is the
same.

Consequently:

• If a Receive event can receive from multiple Send events, the localities of such Sends
are the same.

• If a Send event can supply data to multiple Receive events, the localities of such
Receives are the same.

In all other cases, the locality of a pair of events must be different.
In this context, the possibility for data transfer means that there could be a situa-

tion where the semantics of the communicational model would allow for the two events
to connect, but not necessarily in all cases. One such example is when a Send using
a simple Internet Protocol (IP) based communicational model correctly addresses the
participant executing a Receive event – if the address is correct, then connection to
the receiver is possible, even though an inspection of the software executing these
instructions is necessary to determine whether this scenario could actually happen.

In practice, this means that we distinguish logical topics of communication, which,
depending on the underlying communicational model, might be communication on
a certain port, a message queue, a channel, or even an actual topic in models such
as Message Queue Telemetry Transport (MQTT) [30] or Data Distribution Service
(OMG-DDS) [31]. These topics will behave as variables would in the case of shared
memory local concurrency.

It is also important to note that we need to support different access types of topics
(i.e., variables) because a part of the program might use a stricter communicational

7This is easy in Cat: empty (IW ∗ R) & rf

13

model to access one topic, while another part will use a more relaxed one. Strictness,
in this sense, is governed not only by the communicational model itself but also by the
model’s Quality of Service (QoS) settings. This is not unlike atomics in C11 [32], where
different memory ordering primitives can be used to ascertain the rules the execution
hardware has to enforce. Cat supports tags that can be used in the definition of
custom event sets and relations to help distinguish the different levels of strictness
– we can also take advantage of this approach by defining tags for communicational
models and their respective QoS settings.

3.2 Formal Model of Network Communication in CAT

To give a precise definition to the model of network communication in the context of
this work, we provide an instruction set definition for the communicating software as
a specialization of Lisa, a generic instruction set architecture that can be used with
Cat; and mappings from concepts of the generic communication model to concepts
of the Cat language:

• One or more software instances (hereinafter participants) are communicating with
each other solely via Send and Receive operations.

• Send operations take a value as input, and have no effect on the local execution of
the participant. Send operations are Write instructions from the Lisa instruction
set tagged with “send” and possibly further, communicational-model-specific tags.

• Receive operations return a value sent by a same-location Send operation. Receive
operations are Read instructions from the Lisa instruction set tagged with
communicational-model-specific tags.

• The locality of operations is defined by allocating a variable to each of them,
respecting the locality rules outlined above.

• Default values to failing Receive operations are modeled using initial values of
variables.

With this customized instruction set and corresponding Cat set and relation defi-
nitions, one can now reason about distributed programs communicating via messages
organized in topics. Note that these modifications do not modify the grammar of
Cat but rather extend it by providing a library, defining the required primitives. The
reference implementation of Cat (in Herd [17]) natively supports all the additions.

4 Modeling Common Patterns of Communication

After introducing the formal foundations of NetworCat, we now propose a stan-
dard library of communication patterns to effectively model real-life communicational
models, which should aid the modeling of communications by eliminating the need for
boilerplate parts in the model. It is not our goal to handle every edge-case, but rather
to create an extendable set of rules that cover a wide range of common patterns. In an
effort to accomplish this purpose, first, we identified common phenomena in network
communication, then we gathered a list of patterns that various models either allow
or forbid. Thereby, representing a communicational model only necessitates selecting

14

x := 1

y := 1

i := y

j := x

x := 0 y := 0

po rf fr co

Fig. 6:
Forbidden reordering

x := 1 i := x

j := x

i := x

j := x

x := 2

x := 0

po rf fr

Fig. 7:
Allowed reordering

i := x

x := 1

x := 0

po rf

Fig. 8:
Acausal Read

patterns in accordance with the model’s guarantees and then, if needed, extending the
rules to accommodate any special behavior patterns.

For the definition of syntax constructs used throughout this section, see Figure 5
in Section 2.3.

4.1 Patterns for Common Phenomena in Network
Communication

When it comes to shared memory communication, the reordering of memory accesses
was the main source of complexity. For network communication, however, multiple
types of problems can occur:

• Two messages are sent in one order but observed in another by at least one receiver
• A single message is sent, but multiple messages are received with identical contents
• A message is sent, but no one received it

Note that the last two problematic events are normal when we talk about memory
accesses but might be unusual and/or unwanted when network communication is used.
Based on the most common phenomena in network communication, the list of behavior
patterns we chose to model in our standard library is the following:

1. Reordering: does the order of received messages respect the ordering of the
respective Send operations?

2. Duplication: can multiple receptions by the same participant occur from a single
sent message?

3. Reliability: is the reception of a sent message guaranteed?
4. Broadcasting: can multiple participants receive a single sent message?8

5. Sending synchronicity: can a participant issue new events before a sent message is
received?

6. Blocking reception: can a participant fail and receive a default value, or will all
receive instructions block until successful?

8In general, a message is broadcasted if it is delivered to all participants. In contrast, we characterize
broadcasting as if a participant receives a message from a sender, then it must receive all messages from
that sender.

15

4.1.1 Reordering Messages

The reordering of events is a phenomenon that both concurrent software and
distributed systems exhibit.

No reordering

With no reordering, we expect all rf edges to conform to a strictly sequential execution
– which can be achieved using the following memory model constraint:

let fr = (rfˆ-1 ; co)

acyclic (po | co | rf | fr) as sc
(no-reordering.cat)

As demonstrated in Figure 6, global reordering (akin to sequential consistency)
can be forbidden by disallowing cycles in the subgraph consisting of the program order
(po), coherence order (co), read-from (rf) and from-read (fr) edges.9 The candidate
execution in Figure 6 contains such a cycle, drawn with thicker edges, and is thus
forbidden under the no-reordering constraint.

The syntactic element as sc is helpful in identifying the constraints in the output
of verification tools (here, sc).

Locally no reordering

Another option is that if two Writes to the same variable happen in a particular order
on one participant, then no other participant shall read these values out-of-order.
However, if such Writes were to happen on different participants, then reading may
happen in any order. Thus:

let fr-local = (rfˆ-1 ; (co & (po | IW ∗W))) \id
acyclic (po | co | rf | fr-local) as sc

(locally-no-reordering.cat)

The execution in Figure 7 shows a 4-threaded program, where two of the threads
Write the variables x, while two other threads read them twice. While the reader
threads may perceive the changes to x in any order, it may be required that all readers
should agree on one particular order. Therefore, we may not want to see an execution
where one thread reads 1 then 2, while the other reads 2 then 1. This candidate
execution is shown in Figure 7. Notice the from-read edge: while (no-reordering.cat)
would draw that edge in and therefore invalidate the candidate (due to the cycle with
thick edges), (locally-no-reordering.cat) will not do so. It would only draw in the from-
read(-local) edges (fr-loc) towards such Writes which are co-after some other Write on
the same participant. Therefore, in Figure 7 there will be no cycles, and the execution
is allowed.

9As a reminder, the from-read (fr) edge denotes an inferred happens-before relation between a Read r
and a Write w when there is another Write w′ co-before w and there is an rf edge from w′ to r (i.e., w
could not have happened before r, otherwise r would have read the value written by w).

16

x := 1 x := 2 i := x

j := x

i := x

x := 0

po rf

ext

Fig. 9:
Message duplication

x := 1 i := x

j := x

W

dom(rf)

W
¬ dom(rf)x := 0

po rf

Fig. 10:
Message loss

x := 1

y := 1

i := y

j := x

x := 0 y := 0

po rf

po-com

Fig. 11:
Synchronicity

Causality

If a communicational model wants to allow reordering, we still need to pay attention
to causality – meaning a previous reception should never read a value published by a
po-later send. With no other constraint, this can be realized by disallowing cycles in
the po and rf relations:

acyclic (po | rf) as causality (causality.cat)

The execution in Figure 8 shows a single-threaded candidate execution, where a
po-later Write event should supply the value received by the previous Read event.
This constitutes a cycle in the (po∪rf)-subgraph of the execution graph, and therefore
the candidate is rejected by the constraint (causality.cat).

Of course, finer control over reordering messages can be expressed using Cat –
but that problem is well-covered by the conventional memory modeling of concurrent
programs [17].

4.1.2 Duplicating Messages

With concurrent software, it is not unusual to have a Write’s value passed to multiple
Reads – if that value is in-memory, any number of Reads might receive it. However,
with message-based communication, each message is restricted to be received once in
most cases (either globally, or by participant). To model global uniqueness using Cat,
we can say that there shall not be such a Write that connects to two Read events, by
constructing all sequences of the rf relation with its inverse (therefore, this path of
length 2 would go from a Read to a Write and then to a Read). We need to exclude
self-loops from this rule (i.e., the two Read events must be different):

empty (rfˆ-1; rf) \ id as noDup (global-no-dup.cat)

This rule can be relaxed by allowing each participant to read the value once by also
excluding all Read -pairs from this constraint that are on different participants (ext):

empty (rfˆ-1; rf) \ id \ ext as intNoDup (participant-no-dup.cat)

17

Figure 9 shows these two patterns in detail. Two types of duplication occur in this
candidate execution: x := 1 supplies values to two Reads on the same participant, and
x := 2 supplies values to two Reads on different participants. Applying the constraint
(global-no-dup.cat) will flag all pairs of Reads with the same rf-origin Write as incon-
sistent with the model, while (participant-no-dup.cat) will also check if the pairs of
Reads are on the same thread (i.e., they lack an ext-edge), allowing external Reads to
have the same rf-origin Write. Note that not all ext edges are drawn in Figure 9 for
clarity.

If duplication should be allowed, no constraint is necessary – this is the most
relaxed model.

4.1.3 Losing Messages

In general, it is not forbidden for messages to be lost, i.e., have no associated rf -edge.
It might be required, however, that all messages must be received by at least one
participant: a send operation cannot be considered successful, if no-one received (and
acknowledged) it. This requirement can be formalized in the following constraint:

empty W \ domain(rf) as noSendLost (no-loss.cat)

The constraint asserts that no such Write should exist that does not have an
associated rf-edge, i.e., that is not in the domain of the rf-relation. Demonstrating
this pattern, Figure 10 contains two Writes, the initial Write with value 0 and a
subsequent Write with value 1. As it is shown in the figure, the initial Write has no
dom(rf) label because no rf-edge exists for the Write. Therefore, the constraint does
not hold, and the execution candidate is rejected.

4.1.4 Broadcasting Messages

To further constrain the execution seen in no-loss.cat, it can also be a requirement
that all other participants must receive a value from a particular Write:

let rf-int = rf; int

empty (W ∗R) & loc & ext \ rf \ rf-int as allMustReceive
(broadcast.cat)

The pattern works the following way. First, we relate all Writes to all Reads of
the same variable on different participants ((W ∗R) & loc & ext), then take away all
(w, r) that already have an rf-edge between them (\ rf), as well as those (w, r′) where
r′ is on the same participant as r (\ rf-int). If the remaining set is not empty, then
there is a participant that has at least one Read from the variable, but none of these
Reads read from the Write, i.e., the broadcast did not reach this participant.

Instead of constraining the Write events to have associated rf-edges going to all
participants, the constraint asserts that there shall be no Read event with no edge to
a Write event, without at least one other Read event on the same participant reading
from the Write. This rephrasing of the constraint is useful to prevent unnecessary
candidate rejections if there are other participants that do not attempt to read. As

18

x := 1 i := x

j := x

x := 0

po rf

Fig. 12:
Blocking Read

x := 1 i := x

j := x

k := x

i := x

j := x

k := x

x := 2

x := 0

po rf

Fig. 13:
Broadcasting write

an example, Figure 13 shows a consistent execution with the pattern, where each of
the Writes supply a value to each reading participant, without needing to also supply
values to non-reading participants (such as the other writing participant).

4.1.5 Sending Synchronously

Some communicational models require all send operations to find all its respective
receive operation(s) before proceeding with execution. This is called synchronous
messaging, while asynchronous refers to the case where the sender can proceed inde-
pendently from whether the receivers receive the message or not. Normally, concurrent
programs are asynchronous and therefore no extra constraint has to be placed over
such executions, but synchronicity requires the use of the following construct:

let fr = (rfˆ-1 ; co) \id
let po-com = po | co | rf | fr

empty rf & (po-com ; po-com+) as allRWCoincide

(synchronous.cat)

Consider the execution candidate in Figure 11. The candidate shows an inconsistent
execution of the program given synchronicity because the program may not advance
after any of the Writes before their respective Reads finished, thus there exists an
ordering relation (po-com) between the reads in both directions. This constitutes a
happens-before loop in the graph, making the execution forbidden. The pattern detects
the existence of alternative paths to rf-edges in the happens-before subgraph of the
program because that signals that events exist which are after the Write, but before
the Read (thus violating synchronicity). In the example, the thick rf edge has an
alternative path over y := 1 and i := y, meaning these events were ordered between
the supposedly synchronous rf edge.

4.1.6 Blocking Reception

Normally, a Read from memory could never fail, as the value in the memory is always
established. However, in the case of network communication, it is possible to receive

19

nothing as the result of an attempted reception. In this case, the implementation
might block and wait for a valid value, which is handled implicitly, without modeling
any timing information (and therefore arbitrary time differences are allowed among
any two events). It also might just fail and continue execution normally (with possibly
a random value as their received payload, or a default value as placeholder). For
the blocking case, the following constraint can be used to disallow reading from the
(default) initial value:

empty rf &(IW ∗R) as everyReadReads (blocking.cat)

The execution in Figure 12 shows the only consistent execution of the program
with blocking Reads, as neither of the Reads receive their values from the initial Write
events.

4.2 Generalizing the Standard Model

As mentioned in Section 3, the standard model could include topics, QoS settings,
etc.. As discussed, each segment of the network under different QoS settings can be
tagged accordingly.

Notice that the modeled patterns above use the rf, po, etc. relations directly, even
though different QoS settings might necessitate these rules to be applied differently.
To solve this, all rules above are placed inside procedures [25], which receive these
relations indirectly as parameters. For example, the rule (no-loss.cat) will look like
this:

procedure no-loss(local W, local rf) =

empty local W \ domain(local rf) as noSendLost

end (no-loss.cat)

Thus, if only certain Sends should have delivery guarantees, the filtered set of
Writes (e.g., via a “no-loss” tag) can be passed to this procedure. This greatly reduces
the complexity of models employing several different levels of strictness on ordering.

4.3 Compositions of Patterns

It is natural to have doubts about the composability of the patterns above. They all
constrain similar yet distinct behaviors, and using them side-by-side feels like asking
for unintentional side effects. However, each pattern constrains the executions declar-
atively, not operationally – there is not a pipeline of filters that must be applied on
the executions, but rather, given any candidate execution, we can check any number
of patterns for consistency.

However, it is entirely possible to compose unsatisfiable models. If two patterns
(given a program) contradict each other, it is possible that no execution will be found
consistent with all constraints. However, that is a sign of a misconfigured formal model
rather than a flow in the approach.

One example of such a problem may be combining blocking reads with non-
duplicating writes, and having fewer reads than writes in the program’s execution.

20

UDP

include "causality.cat"
call causality(po, rf)

include "blocking.cat"
call blocking(R, rf)

Fig. 14: udp.cat

send(x, 1) | i = receive(x)
send(x, 2) | send(x, i)

| j = receive(x)

Fig. 15: udp.litmus

That will inevitably be unsolvable, as the two patterns cannot be satisfied at the same
time, given the number and nature of communication events – this means that the exe-
cution prescribed by the program will halt earlier than expected before a superfluous
Read could advance the program’s flow.

For examples on composability, see Section 5, where we show a memory model for
UDP [33], TCP [34] and DDS [31].

5 Evaluation of the Applicability of the Approach

To demonstrate the applicability of the presented approach, we set out to answer two
research questions:

RQ1 Can we adapt the approach to communicational models employed by message-
passing networked systems?
RQ2 Can we adapt the approach to industrially used, complex, configurable,
distributed-memory-based communicational models?

To answer these questions, we model two simple message-passing examples, UDP
and TCP, as well as a significantly more complex communicational model, OMG-DDS
[31].

5.1 User Datagram Protocol (UDP)

UDP [33] is a simple, best-effort point-to-point or point-to-multipoint communica-
tion protocol. It allows reordering, duplication, and message loss. We assume that the
content of the messages are preserved during transmission (or changes are detected
by some error-correction code and the affected message is dropped, resulting in mes-
sage loss). In this example, we opted to demonstrate the point-to-point version for
simplicity.

Based on its semantics, a model for UDP needs the following patterns:

• Reordering, but causality
• Duplication
• Loss

• No broadcasting
• Asynchronous
• Reception is blocking

This selection of patterns is realized by the memory model in Figure 14. To show-
case the properties above, we would like to generate executions of the litmus test in

21

x := 1

x := 2

i := x

x := i

j := x

x := 0

po rf

(a) Solution 1

x := 1

x := 2

i := x

x := i

j := x

x := 0

po rf

(b) Solution 2

x := 1

x := 2

i := x

x := i

j := x

x := 0

po rf

(c) Solution 3

x := 1

x := 2

i := x

x := i

j := x

x := 0

po rf

(d) Solution 4

x := 1

x := 2

i := x

x := i

j := x

x := 0

po rf

(e) Solution 5

x := 1

x := 2

i := x

x := i

j := x

x := 0

po rf

(f) Solution 6

Fig. 16: Solutions to Figure 15 over Figure 14

Figure 15. The observed executions are presented in Figure 16. The executions show
that the memory model works as intended:

• Solution 2 shows duplication and loss
• Solution 4 shows reordering and asynchronous-ness
• No solution has been generated that contradicts causality, even though the second
participant could have read from its own future

• No solution has been generated that contradicts the blocking effect, as no Read
received its data from an initial send

5.2 Transmission Control Protocol (TCP)

In contrast to UDP, TCP [34] is a reliable, mainly point-to-point communication
protocol. It guarantees that all sent messages are delivered without reordering or
duplication. Therefore, it needs to abide by the following patterns:

• No reordering
• No duplication
• No loss

• No broadcasting
• Synchronous
• Reception is blocking

22

TCP

include "no-reordering.cat"
call no-reordering(rf, co, id, po)

include "global-no-dup.cat"
call global-no-dup(rf, id)

include "no-loss.cat"
call no-loss(W, rf)

include "synchronous.cat"
call synchronous(rf, co, id, po)

include "blocking.cat"
call blocking(R, rf)

Fig. 17: TCP memory model

send(x, 1) | i = receive(x)
i = receive(y) | send(y, i)
send(x, 2) | j = receive(x)

Fig. 18: TCP Litmus test

x := 1

i := y

x := 2

i := x

y := i

j := x

x := 0 y := 0

po rf

(a) Forbidden 1

x := 1

i := y

x := 2

i := x

y := i

j := x

x := 0 y := 0

po rf

(b) Forbidden 2

x := 1

i := y

x := 2

i := x

y := i

j := x

x := 0 y := 0

po rf

(c) Forbidden 3

x := 1

i := y

x := 2

i := x

y := i

j := x

x := 0 y := 0

po rf

(d) Only allowed

Fig. 19: Some potential solutions to Figure 18

The memory model for TCP can be seen in Figure 17.
And the representative litmus test (We did not use the same litmus test (Figure 15),

as the mismatched number of send and receive events would make it impossible to
generate any solutions) can be seen in Figure 18

Notice that only a single execution was generated (seen in Figure 19d): this is
because the strict rules of TCP disallow any other execution. See Figure 19 for all the
solutions that were eliminated by its rules.

Consider the forbidden execution in Figure 19a. It would violate a number of pat-
terns: it loses the value of the last Write (loss), there is a Read that received no value
(non-blocking), and it is not possible that the two pairs of Read -Write events were exe-
cuted synchronously (asynchronous). In addition, Figure 19b shows duplication, and
Figure 19c shows reordering of events. This shows that the litmus test could produce
forbidden results, but the constructed memory model (rightly) eliminates them.

23

5.3 Data Distribution Service (DDS)

Data Distribution Service (DDS) [31] is a middleware specifically designed to facilitate
data exchange between distributed systems via samples (messages). It is used exten-
sively across various domains including defense, aerospace, healthcare, and industrial
automation due to its capabilities in supporting real-time communication, reliability,
scalability, and interoperability.

DDS adopts a publish-subscribe communication model, where data producers
(writers) and data consumers (readers) can exchange data without requiring direct
knowledge of one another. This decoupling allows for flexible and dynamic data shar-
ing. Additionally, DDS provides Quality of Service (QoS) mechanisms that enable
users to configure parameters like reliability, message durability, resource allocation,
and security according to the specific requirements of their applications.

It is worth to note that in some aspects, DDS is closer to shared-memory systems
than message-based models, as client applications will generally read and write vari-
ables transparently on different participants, using local caches, and it is the job of
the middleware to ensure cache synchronization among participants. This makes mod-
eling the policies of DDS more in-line with the concepts of Cat than, e.g., TCP or
UDP in Section 4.

DDS defines the concept of domains, which serve as logical groupings of DDS
applications that can communicate with each other through DDS. Furthermore, an
important feature of DDS is its support for partitions. Partitions allow data to be
filtered based on content and associated metadata. This enables logical segregation
of data within a domain, enabling different groups of readers to subscribe to specific
subsets of data based on their interests. Only readers and writers that are compati-
ble (i.e., they are in the same domain and have non-excluding partition filters) may
communicate.

In the context of this work, we will focus on modeling a subset of the QoS policy
options for DDS that directly impact the safety of a user program. These are the
following:

• History: Specifies whether to keep all samples accessible for readers (keep-all), or
the last N (keep-last). For the value of N , see DurabilityService.

• DurabilityService: Specifies the history depth for keeping samples.
• Ownership: The exclusive setting ensures that only one writer at a time is allowed
to modify the data (akin to a mutex). The shared setting allows all publishers to
publish data, even simultaneously.

• Presentation: Specifies how changes to data instances are presented to subscrib-
ing applications. The setting ordered access can make sample propagation always
respect their creation order.

• Partition: Enables a logical separation of data within a domain. Only compatible
Writers and Readers may communicate.

• Reliability: Ensures that data sent by a writer is reliably delivered to its intended
readers. DDS supports two reliability modes: reliable and best-effort.

• Durability: Allows data to persist even after the writer has gone offline. DDS
supports two durability modes: volatile and transient.

24

• DestinationOrder: Specifies the order in which data is delivered to read-
ers, based on either the source or the reception timestamp of the message
(by reception timestamp, by source timestamp).

Note that we discarded certain resource-related (e.g., ResourceLimits) and timing-
related QoS settings (e.g., Deadline) because they are out-of-scope for our approach.
We aim to use the models for qualitative analysis rather than quantitative analysis,
meaning we can reason about all possible timing- and resource-allocations at once,
independent of their exact constraints. Furthermore, some QoS settings have no direct
effect on the delivery of messages (e.g., UserData), and are thus excluded.

5.3.1 Formal System Model

Systems utilizing DDS for communication may be very heterogeneous in terms of
programming languages, operating systems, architectures, and runtimes. To establish
exactly what common features this approach supports, we create a simplified version
of a system communicating via DDS. We opted to use bell files for this specification,
which can serve as a preamble for Cat [25].

First, we must define the possible values for the QoS settings. This may be done
with enums the way shown in Figure 20 (each entry is given in the order of increasing
strictness, using the syntax of Cat [25]).

We also need to support the partitioning of the data space into domains and
partitions, so that Writes and reads may only communicate if they are in the same
domain, and compatible partitions.

We expect the user to provide the layout of the data space using two special
relations, compatible partition and same domain. These must relate compatible
memory accesses with each other, so that the relation in Figure 21 will include all
pairs of accesses that are compatible.

We also expect the enumerations domains and partitions to be defined. Using
these and the enumerations defined above, we can specify the blueprint of the
instructions available for use. These are shown in Figure 22.

It is worth to note that some QoS settings are applied to Topics, DataWriters,
DataReaders, Publishers, Subscribers, and DomainParticipants. However, in Cat, we
only get the option to add tags to instructions, therefore we must encode all settings
at the level of instructions. For example, if a Topic has a certain QoS setting, then all
Write and read events to that topic will need to include the QoS setting.

Note that instructions tagged with a certain value of an enumeration will be
available in the corresponding capitalized event set (e.g., ’shared → SHARED).

5.3.2 Assembling the Memory Model

To create the memory model of DDS (as formalized in Section 5.3.1), we need to apply
constraints on the tagged instructions. We make use of the composability of the rules
(as most QoS settings are independent of each other), and define the model aspect by
aspect.

25

enum history = ’keeplast || ’keepall
enum ownership = ’shared || ’exclusive
enum presentation = ’orderedaccess || ’noorderedaccess
enum reliability = ’reliable || ’besteffort
enum durability = ’volatile || ’transient
enum destinationorder = ’reception || ’source

Fig. 20: DDS QoS options

let compatible rf = (compatible partition & same domain)
empty rf \ compatible rf as domOrPartIncompatible

Fig. 21: Compatibility relation

W[domains,partitions,history,ownership,presentation,
reliability,durability,destinationorder]

R[domains,partitions,history,ownership,presentation,
reliability,durability,destinationorder]

Fig. 22: Instructions

include "locally-no-reordering.cat"
call locally-no-reordering(rf, co)

Fig. 23: Baseline

include "no-reordering.cat"
call no-reordering(

rf & (KEEPLAST * KEEPLAST),
co & (KEEPLAST * KEEPLAST))

Fig. 24: History

include "no-reordering.cat"
let co3 = co; co; co
call no-reordering(

rf & (KEEPLAST * KEEPLAST),
co3 & (KEEPLAST * KEEPLAST))

Fig. 25: DurabilityService

let EW = EXCLUSIVE & dom(rf) \IW
empty (EW * EW) & loc & ext

Fig. 26: Ownership

include "no-reordering.cat"
call no-reordering(

rf & (ORDEREDACCESS*ORDEREDACCESS),
co & (ORDEREDACCESS*ORDEREDACCESS))

Fig. 27: Presentation

include "broadcast.cat"
call broadcast(

W & RELIABLE,
R & RELIABLE)

Fig. 28: Reliability

include "synchronous.cat"
call synchronous(

rf & (VOLATILE * VOLATILE))

Fig. 29: Durability

include "no-reordering.cat"
call no-reordering(

rf & (SOURCE * SOURCE),
co & (SOURCE * SOURCE))

Fig. 30:
DestinationOrder

Baseline model

There are some QoS-independent guarantees that DDS provides its users. Most impor-
tantly, out-of-order messages sent by the same participant will be dropped independent
of any ordering constraints (i.e., older values will not “overwrite” later values), and
read instructions need to completely finish before execution may continue (i.e., there
is no reordering of read instructions). These two constraints may be formalized in the
memory model the way shown in Figure 23.

Note that some elements of the list of patterns in Section 4 are not directly relevant
to DDS, independent of QoS settings:

26

• Duplication is always allowed because (akin to shared-memory systems), a reader
will always be able to read at least the last submitted sample.

• Blocking reception is not usually allowed because the semantics of a receiver resem-
ble shared-memory reading instead of actual message reception, thus a value is
always retrieved. In the initial case when no previous samples have been submitted
by a compatible writer, the Read fails – i.e., either a safe default is returned, or an
exception is raised, rendering the instruction unsuccessful, thus not included in the
(candidate) execution.

History and DurabilityService

History can either keep all samples for later use (therefore any read may read from
any write), or only the last N samples (given by the value given to DurabilityService).

If any read may read from any Write, we need not place any additional constraints
on the executions, as this is the most relaxed model. For KEEP LAST, however, we
need to make sure that older Writes may not write to newer reads. This coincides
with the effect of the no-reordering.cat rule because if a newer Write is observed, no
older Write shall be accessible (see Figure 24).

For DurabilityService values larger than 1, we need to use a longer co-chain, such
as the one in Figure 25 (for N = 3).

Ownership

By default, topics are shared, i.e., multiple writers may publish samples at the same
time. If, however, the exclusive setting is used instead, the model needs to constrain
the executions such that no two foreign Writes may succeed (see Figure 26).

Notice that we must allow initial Writes to succeed, as those Writes are inherently
external to all other Writes.

Presentation

If ordered access is set, the instructions shall not be reorderered. This is implemented
in Figure 27.

Reliability

If samples are sent with the setting reliable, no potential compatible readers may ignore
the Write – therefore, the rule (broadcast.cat) may be used, shown in Figure 28.

Durability

By default, topics are transient, i.e., reads may receive a value from a writer that is no
longer active. If the volatile setting is used instead, sample reception is synchronous,
as only currently active Writes may interact with Reads, meaning the Reader and
Writer both need to be active at the same time. This rule is implemented in Figure 29.

DestinationOrder

Depending on the ordering constraint, samples are either ordered by their recep-
tion timestamp (by default), or their source timestamp, which results in a global
no-reordering constraint in Figure 30.

27

5.4 Summary of the Applicability

As demonstrated by the examples for UDP (Section 5.1), TCP (Section 5.2), and DDS
(Section 5.3), the proposed approach of modeling network-based communication with
the toolset (namely, Cat [25]) for shared- and weak-memory systems works well for
real-life communicational models and QoS settings. While complex communicational
models will inevitably include settings not covered in Section 4 as part of the standard
library, these situations are easily overcome, such as in Figure 26.

5.5 Threats to Validity

As we do not perform a performance-based evaluation of the proposed approach
(because the effect of our contributions is not measurable with a comparative evalu-
ation), we only discuss the relevant internal and construct validity of the evaluation
above. We chose the three examples (UDP, TCP and OMG-DDS) as three vastly dif-
ferent models, hopefully covering most aspects of relevant communicational models.
We deliberately chose both message-passing (UDP, TCP) and shared-variable-based
models (OMG-DDS), as we set out to show the applicability on simple models far
removed from the concept of shared memory (UDP, TCP), and complex models more
aligned with its concept (OMG-DDS). We could not test complex models that are not
aligned with the shared-memory concept, as to the best of our knowledge, no such
widely used solution exists. We have shown that the patterns introduced in Section 4
are useful in modeling real-life models, but the completeness of this pattern-collection
has not been evaluated. Furthermore, the proof-of-concept tool [23], while able to
handle litmus-test-sized examples for all models in the evaluation, has not been thor-
oughly tested with bigger, more realistic example programs. We plan to continue our
research bridging the two fields together, and will hopefully rectify these shortcom-
ings when future research enables us to pursue them. However, we are confident that
despite these limitations, the research questions posed in this paper could both be
answered positively:

RQ1 We can adapt the approach to communicational models employed by message-
passing networked systems.
RQ2 We can adapt the approach to industrially used, complex, configurable,
distributed-memory-based communicational models.

6 Conclusion and Future Work

In this paper, we introduced an approach that bridges the fields of distributed systems
and weak-memory concurrency. Using the presented techniques, the qualitative, func-
tional verification of networked systems is opened up for tools conventionally used for
shared-memory concurrency, therefore furthering both fields:

• distributed systems by adding a set of new tools to their verification portfolio; and
• shared-memory concurrency verification by adding a new domain, with potential
for new optimizations to existing approaches.

28

Furthermore, it widens the respective visibility of the fields by researchers and
users of both.

While the proposed approach works well for the subset of QoS settings of complex
communicational models that are directly responsible for the qualitative safety of a
system (see Section 5.3), further work is necessary to extend the presented technique to
also support quantitative metrics, possibly related to timing- and resource-guarantees
of these communicational models. Furthermore, a comparative evaluation of verifica-
tion tools is necessary to show that they perform well over the presumably different
characteristics of models sourced from distributed systems as well.

However, the goal of this paper was not to introduce a single tool or algorithm that
solves the problem of distributed system verification. Rather, we set out to unify efforts
in two separate domains: analysis of software with weak memory semantics and anal-
ysis of distributed message-passing systems. We believe that the ongoing development
of verification techniques, which have already benefited the analysis of weak memory
concurrency, may be of use in the field of distributed system verification. Therefore,
we have introduced an adaptation framework, using the specification language Cat,
for a seamless transformation among these domains.

To the best of our knowledge, similar work has not yet been performed, and other
efforts – e.g., those introduced in Section 1.1 – all rely on purpose-built modeling
frameworks such as process calculi. This constrains the audience (and hence limits the
development effort) to such solutions. We are confident that a transformation-based
approach is superior not because of its immediate usability or performance (which
our proof-of-concept implementation [23] almost certainly lacks) but because of the
opportunities it enables. In the broad field of systems verification, such approaches
have seen widespread praise from the community, e.g., in the case of bridging hardware-
and software verification by transforming C programs to BTOR2 circuits [35], or
vice versa [36], or transforming Constrained Horn Clause (CHC) logic problems to C
programs [37].

We believe that the best-case outcome of our work is having distributed system
analysis research – enabled via our transformation framework – join the efforts of
shared memory concurrency verification. Therefore, verification tools could receive
additional development effort; research results could receive additional attention, and
– hopefully – previously unsolvable problems could finally receive solutions.

In the future, we plan to explore the requirements of safety-critical distributed
systems in greater detail to show how our proposed approach can be adapted to
work with models using various communication models. We also plan to look at the
scalability of our solution to show that real-world examples can successfully be mapped
and verified using the techniques presented in this paper. Furthermore, we plan to
start working on tool support for creating the memory models automatically from
communication model descriptions, such as OMG-DDS configuration files.

This research was partially funded by the ÚNKP-24-3 New National Excellence Program of the Ministry
of Innovation and Technology, from the National Research, Development and Innovation Fund of Hun-
gary (grant no. ÚNKP-24-3-BME-213). The Doctoral Excellence Fellowship Programme (DCEP) is funded
by the National Research Development and Innovation Fund of the Ministry of Culture and Innovation
and the Budapest University of Technology and Economics, under a grant agreement with the National
Research, Development and Innovation Office. This work was partially supported by the National Research,
Development and Innovation Fund of Hungary, financed under the 2022-1.2.4-EUREKA-2023-00013 scheme.

29

References

[1] Loo, B.T.: The design and implementation of declarative networks. PhD thesis,
University of California at Berkeley (2006)

[2] Guerraoui, R., Yabandeh, M.: Model checking a networked system without the
network. NSDI’11: Proceedings of the 8th USENIX conference on Networked
systems design and implementation (2011) https://doi.org/10.5555/1972457.
1972481

[3] Lobo, J., Ma, J., Russo, A., Le, F.: Declarative distributed computing. Correct
Reasoning, 454–470 (2012) https://doi.org/10.1007/978-3-642-30743-0 31

[4] Loo, B.T., Condie, T., Garofalakis, M., Gay, D.E., Hellerstein, J.M., Maniatis,
P., Ramakrishnan, R., Roscoe, T., Stoica, I.: Declarative networking. Commu-
nications of the ACM 52(11), 87–95 (2009) https://doi.org/10.1145/1592761.
1592785

[5] MA, J., LE, F., WOOD, D., RUSSO, A., LOBO, J.: A declarative approach to
distributed computing: Specification, execution and analysis. Theory and Prac-
tice of Logic Programming 13(4–5), 815–830 (2013) https://doi.org/10.1017/
s1471068413000513

[6] Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco, CA,
United States (1996)

[7] Hoare, C.A.R.: Communicating Sequential Processes. Commun. ACM 21(8), 666–
677 (1978) https://doi.org/10.1145/359576.359585

[8] Milner, R.: A Calculus of Communicating Systems. Lecture Notes in Computer
Science, vol. 92. Springer, Berlin, Germany (1980). https://doi.org/10.1007/
3-540-10235-3

[9] Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, I. Inf. Comput.
100(1), 1–40 (1992) https://doi.org/10.1016/0890-5401(92)90008-4

[10] Wang, A., Basu, P., Loo, B.T., Sokolsky, O.: Declarative network verification.
Practical Aspects of Declarative Languages 5418, 61–75 (2008) https://doi.org/
10.1007/978-3-540-92995-6 5

[11] Kapus, T.: Improved Formal Verification of SDN-Based Firewalls by Using
TLA+. IEEE Access 11, 107126–107134 (2023) https://doi.org/10.1109/
ACCESS.2023.3320050

[12] Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L.,
Setty, S.T.V., Zill, B.: IronFleet: proving practical distributed systems correct.
In: Miller, E.L., Hand, S. (eds.) Proceedings of the 25th Symposium on Operating
Systems Principles, SOSP 2015, Monterey, CA, USA, October 4-7, 2015, pp. 1–17.

30

https://doi.org/10.5555/1972457.1972481
https://doi.org/10.5555/1972457.1972481
https://doi.org/10.1007/978-3-642-30743-0_31
https://doi.org/10.1145/1592761.1592785
https://doi.org/10.1145/1592761.1592785
https://doi.org/10.1017/s1471068413000513
https://doi.org/10.1017/s1471068413000513
https://doi.org/10.1145/359576.359585
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1007/978-3-540-92995-6_5
https://doi.org/10.1007/978-3-540-92995-6_5
https://doi.org/10.1109/ACCESS.2023.3320050
https://doi.org/10.1109/ACCESS.2023.3320050

ACM, Monterey, CA (2015). https://doi.org/10.1145/2815400.2815428

[13] Rahli, V., Guaspari, D., Bickford, M., Constable, R.L.: Formal Specification, Veri-
fication, and Implementation of Fault-Tolerant Systems using EventML. Electron.
Commun. Eur. Assoc. Softw. Sci. Technol. 72 (2015) https://doi.org/10.14279/
TUJ.ECEASST.72.1013

[14] Wilcox, J.R., Woos, D., Panchekha, P., Tatlock, Z., Wang, X., Ernst, M.D.,
Anderson, T.E.: Verdi: a framework for implementing and formally verifying dis-
tributed systems. In: Grove, D., Blackburn, S.M. (eds.) Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, Portland, OR, USA, June 15-17, 2015, pp. 357–368. ACM, Portland, OR,
USA (2015). https://doi.org/10.1145/2737924.2737958

[15] Sergey, I., Wilcox, J.R., Tatlock, Z.: Programming and proving with distributed
protocols. Proc. ACM Program. Lang. 2(POPL), 28–12830 (2018) https://doi.
org/10.1145/3158116

[16] Mogk, R., Drechsler, J., Salvaneschi, G., Mezini, M.: A fault-tolerant program-
ming model for Distributed Interactive Applications. Proceedings of the ACM
on Programming Languages 3(OOPSLA), 1–29 (2019) https://doi.org/10.1145/
3360570

[17] Alglave, J., Maranget, L., Tautschnig, M.: Herding Cats: Modelling, Simulation,
Testing, and Data Mining for Weak Memory. ACM Trans. Program. Lang. Syst.
36(2), 7–1774 (2014) https://doi.org/10.1145/2627752

[18] Bornholt, J., Torlak, E.: Synthesizing memory models from framework sketches
and Litmus tests. In: Cohen, A., Vechev, M.T. (eds.) 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2017,
pp. 467–481. ACM, Barcelona, Spain (2017). https://doi.org/10.1145/3062341.
3062353

[19] Trippel, C., Manerkar, Y.A., Lustig, D., et al.: TriCheck: Memory Model Verifi-
cation at the Trisection of Software, Hardware, and ISA. In: Chen, Y., Temam,
O., Carter, J. (eds.) 22nd International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2017, pp. 119–133.
ACM, Xi’an, China (2017). https://doi.org/10.1145/3037697.3037719

[20] Kokologiannakis, M., Raad, A., Vafeiadis, V.: Model checking for weakly consis-
tent libraries. In: McKinley, K.S., Fisher, K. (eds.) Conference on Programming
Language Design and Implementation, PLDI 2019, pp. 96–110. ACM, Phoenix,
Arizona, United States (2019). https://doi.org/10.1145/3314221.3314609

[21] León, H.P., Furbach, F., Heljanko, K., et al.: BMC with Memory Models as
Modules. In: Bjørner, N., Gurfinkel, A. (eds.) 2018 Formal Methods in Com-
puter Aided Design, FMCAD 2018, pp. 1–9. IEEE, Austin, TX, USA (2018).

31

https://doi.org/10.1145/2815400.2815428
https://doi.org/10.14279/TUJ.ECEASST.72.1013
https://doi.org/10.14279/TUJ.ECEASST.72.1013
https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1145/3158116
https://doi.org/10.1145/3158116
https://doi.org/10.1145/3360570
https://doi.org/10.1145/3360570
https://doi.org/10.1145/2627752
https://doi.org/10.1145/3062341.3062353
https://doi.org/10.1145/3062341.3062353
https://doi.org/10.1145/3037697.3037719
https://doi.org/10.1145/3314221.3314609

https://doi.org/10.23919/FMCAD.2018.8603021

[22] Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing
systems. J. ACM 42(1), 124–142 (1995) https://doi.org/10.1145/200836.200869

[23] Bajczi, L., Molnár, V.: NetworCat: Axiomatic Analysis of Distributed Systems.
https://doi.org/10.5281/zenodo.8147152 . Budapest University of Technology
and Economics

[24] Waterman, A., Asanović, K.: The RISC-V Instruction Set Manual Version 2.2
(2017). https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

[25] Alglave, J., Cousot, P., Maranget, L.: Syntax and semantics of the weak
consistency model specification language cat. CoRR abs/1608.07531 (2016)
arXiv:1608.07531

[26] Kokologiannakis, M., Lahav, O., Sagonas, K., et al.: Effective stateless model
checking for C/C++ concurrency. Proc. ACM Program. Lang. 2(POPL), 17–
11732 (2018) https://doi.org/10.1145/3158105

[27] Lahav, O., Vafeiadis, V., Kang, J., et al.: Repairing Sequential Consistency in
C/C++11. In: 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation. PLDI 2017, pp. 618–632. Association for Comput-
ing Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3062341.
3062352

[28] Gavrilenko, N., León, H.P., Furbach, F., et al.: BMC for Weak Memory Models:
Relation Analysis for Compact SMT Encodings. In: Dillig, I., Tasiran, S. (eds.)
Computer Aided Verification - 31st International Conference, CAV 2019. Lecture
Notes in Computer Science, vol. 11561, pp. 355–365. Springer, New York, NY,
USA (2019). https://doi.org/10.1007/978-3-030-25540-4 19

[29] Rakamaric, Z., Emmi, M.: SMACK: Decoupling Source Language Details from
Verifier Implementations. In: Biere, A., Bloem, R. (eds.) Computer Aided Veri-
fication - 26th International Conference, CAV 2014. Lecture Notes in Computer
Science, vol. 8559, pp. 106–113. Springer, Vienna, Austria (2014). https://doi.
org/10.1007/978-3-319-08867-9 7

[30] MQTT Version 5.0. Technical report, OASIS Standard (March 2019). https://
docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

[31] OMG Data Distribution Service (DDS) Version 1.4. Technical report, Object
Management Group (April 2015). https://www.omg.org/spec/DDS/1.4/PDF

[32] Programming languages — C. International standard, International Organization
for Standardization, International Electrotechnical Commission (December 2010).
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf

32

https://doi.org/10.23919/FMCAD.2018.8603021
https://doi.org/10.1145/200836.200869
https://doi.org/10.5281/zenodo.8147152
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://arxiv.org/abs/1608.07531
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1007/978-3-030-25540-4_19
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/978-3-319-08867-9_7
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://www.omg.org/spec/DDS/1.4/PDF
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf

[33] User Datagram Protocol. RFC Editor (1980). https://doi.org/10.17487/RFC0768
. https://www.rfc-editor.org/info/rfc768

[34] Eddy, W.: Transmission Control Protocol (TCP). RFC Editor (2022). https://
doi.org/10.17487/RFC9293 . https://www.rfc-editor.org/info/rfc9293

[35] Chien, P.-C., Lee, N.-Z.: CPV: A Circuit-Based Program Verifier. In: Finkbeiner,
B., Kovács, L. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems, pp. 365–370. Springer, Cham (2024)

[36] Beyer, D., Chien, P.-C., Lee, N.-Z.: Bridging Hardware and Software Analysis
with Btor2C: A Word-Level-Circuit-to-C Translator. In: Sankaranarayanan, S.,
Sharygina, N. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems, pp. 152–172. Springer, Cham (2023)

[37] Bajczi, L., Molnár, V.: Solving Constrained Horn Clauses as C Programs with
CHC2C. In: Neele, T., Wijs, A. (eds.) Model Checking Software: 30th Interna-
tional Symposium, SPIN 2024. Lecture Notes in Computer Science. Springer,
Luxembourg City, Luxembourg (2025)

33

https://doi.org/10.17487/RFC0768
https://www.rfc-editor.org/info/rfc768
https://doi.org/10.17487/RFC9293
https://doi.org/10.17487/RFC9293
https://www.rfc-editor.org/info/rfc9293

	Introduction
	Analysis of Distributed Systems
	Similarities to Weak Memory Verification
	Goals of this Paper

	Analysis of Shared Memory Software
	Memory Models
	Sequential Consistency (SC)
	Total Store Ordering (TSO)
	Weak Memory

	Declarative Semantics
	The CAT Specification Language
	Analysis Tools
	Herd
	RCMC
	GenMC
	Dartagnan

	Modeling Message-Based Communication in CAT
	Modeling Send and Receive Semantics in Cat
	Formal Model of Network Communication in CAT

	Modeling Common Patterns of Communication
	Patterns for Common Phenomena in Network Communication
	Reordering Messages
	No reordering
	Locally no reordering
	Causality

	Duplicating Messages
	Losing Messages
	Broadcasting Messages
	Sending Synchronously
	Blocking Reception

	Generalizing the Standard Model
	Compositions of Patterns

	Evaluation of the Applicability of the Approach
	User Datagram Protocol (UDP)
	Transmission Control Protocol (TCP)
	Data Distribution Service (DDS)
	Formal System Model
	Assembling the Memory Model
	Baseline model
	History and DurabilityService
	Ownership
	Presentation
	Reliability
	Durability
	DestinationOrder

	Summary of the Applicability
	Threats to Validity

	Conclusion and Future Work

