
Budapest University of Technology and Economics
Department of Measurement and Information Systems

FTSRG Research Group

Will My Program Break on This 
Faulty Processor?
Formal Analysis of Hardware Fault Activations in 
Concurrent Embedded Software
Levente Bajczi1, András Vörös1,2, Vince Molnár 1,2

1 FTSRG, Budapest University of Technology and Economics
2 MTA-BME Lendület Cyber-physical Systems Research Group

EMSOFT, New York, 14/10/2019



Will My Program Break on This Faulty Processor? @ EMSOFT’19 2

Authors & Acknowledgments

Levente Bajczi András Vörös Vince Molnár

Hungarian
Academy of 
Sciences

Acknowledgments. The research reported in this paper was partially supported by the BME – Artificial Intelligence FIKP grant
of EMMI (BME FIKP-MI/SC) and the Nemzeti Tehetség Program, Nemzet Fiatal Tehetségeiért Ösztöndíj 2018 (NTP-NFTÖ-18).



Will My Program Break on This Faulty Processor? @ EMSOFT’19 3

Overview



What is the 
Problem?

Will My Program Break on This Faulty Processor? @ EMSOFT’19 4



Will My Program Break on This Faulty Processor? @ EMSOFT’19 5

Motivation

ARM Cortex A9

1. STORE(x, 1, rel);
2. STORE(x, 2, rel);

1. r1 = LOAD(x, rel);
2. r2 = LOAD(x, rel);

x = 0;

Forbidden: r1 = 2 && r2 = 1

Undetected for 3 years after release

Happens ~80 times in a billion runs

Patched by
compiler mappings



Will My Program Break on This Faulty Processor? @ EMSOFT’19 6

• Sounds similar to concurrency issues
– Nondeterministic activation – hard to catch
– But: activation of HW fault vs. coding error
– Programmer’s assumptions are violated

– …and most analysis tools’ assumptions as well

Theoretical Question

…but I plan to ever run only
a single application on it

If I have a processor with
some known problem…

Will My Program Break on This Faulty Processor?

Programmer View

System View

vs.



Will My Program Break on This Faulty Processor? @ EMSOFT’19 7

• A Memory Consistency Model (MCM) defines
– How to order memory operations
– Issued asynchronously by CPU cores
– To serialize them for the shared memory

Focus: Memory Consistency Models

x := 2

y := 1

r1 := y

r2 := x

Intuitive:
Sequential Ordering

𝒓𝒓𝒓𝒓 = 𝒓𝒓 ⇒ 𝒓𝒓𝒓𝒓 = 𝒓𝒓

Litmus test:
Illustrates the

guarantees of an MCM

x := 2

y := 1

r1 := y

r2 := x

r1=1 
r2=2

x := 2

y := 1

r1 := y

r2 := x

r1=0 
r2=2



Pr
og

ra
m

 o
rd

er

𝒓𝒓𝒓𝒓 = 𝒓𝒓 ⇒ 𝒓𝒓𝒓𝒓 = 𝒓𝒓

x := 2

x := 1

r1 := x

r2 := x

Will My Program Break on This Faulty Processor? @ EMSOFT’19 8

• A Memory Consistency Model (MCM) defines
– How to order memory operations
– Issued asynchronously by CPU cores
– To serialize them for the shared memory

Focus: Memory Consistency Models

Intuitive:
Sequential Ordering

𝒓𝒓𝒓𝒓 = 𝒓𝒓 ⇒ 𝒓𝒓𝒓𝒓 = 𝒓𝒓

Fast:
Weak Ordering

Litmus test:
Illustrates the

guarantees of an MCM

x := 2

y := 1

r1 := y

r2 := x

x := 2

y := 1

r1 := y

r2 := x

Thread A 
“sees”:

x := 2

y := 1

r1 := y

r2 := x

Thread B 
“sees”:



Will My Program Break on This Faulty Processor? @ EMSOFT’19 9

• A Memory Consistency Model (MCM) defines
– How to order memory operations
– Issued asynchronously by CPU cores
– To serialize them for the shared memory

Focus: Memory Consistency Models

Intuitive:
Sequential Ordering

𝒓𝒓𝒓𝒓 = 𝒓𝒓 ⇒ 𝒓𝒓𝒓𝒓 = 𝒓𝒓

Fast:
Weak Ordering

𝒓𝒓𝒓𝒓 = 𝒓𝒓 ⇒ 𝒓𝒓𝒓𝒓 = 𝒓𝒓

x := 2

r1 := y

y := 1

r2 := x

Middle ground:
Total Store Order

𝒓𝒓𝒓𝒓 = 𝒓𝒓 ⇏ 𝒓𝒓𝒓𝒓 = 𝒓𝒓

Litmus test:
Illustrates the

guarantees of an MCM

x := 2

y := 1

r1 := y

r2 := x

x := 2

x := 1

r1 := x

r2 := x



x := 2

r1 := y

y := 1

r2 := x

Will My Program Break on This Faulty Processor? @ EMSOFT’19 10

• A Memory Consistency Model (MCM) defines
– How to order memory operations
– Issued asynchronously by CPU cores
– To serialize them for the shared memory

Focus: Memory Consistency Models

Intuitive:
Sequential Ordering

𝒓𝒓𝒓𝒓 = 𝒓𝒓 ⇒ 𝒓𝒓𝒓𝒓 = 𝒓𝒓

Fast:
Weak Ordering

𝒓𝒓𝒓𝒓 = 𝒓𝒓 ⇒ 𝒓𝒓𝒓𝒓 = 𝒓𝒓

Middle ground:
Total Store Order

𝒓𝒓𝒓𝒓 = 𝒓𝒓 ⇏ 𝒓𝒓𝒓𝒓 = 𝒓𝒓

Litmus test:
Illustrates the

guarantees of an MCM

x := 2

y := 1

r1 := y

r2 := x

x := 2

x := 1

r1 := x

r2 := x

Cores observe
same order

Different cores may observe
different orders for other cores



Will My Program Break on This Faulty Processor? @ EMSOFT’19 11

C. Trippel et al: TriCheck: Memory Model Verification at the 
Trisection of Software, Hardware, and ISA, ASPLOS 2017
• Formal verification of MCM implementations

– Specification: C11 memory model
• Method: check feasibility of forbidden outcomes of litmus 

tests
– Analyzes dependencies between pipeline stages of different operations

– Compiler
– Virtual Memory
– Instruction Set Architecture (ISA)
– Hardware implementation

• Applied on early RISC-V design and revealed 100+ problems

Foundations: TriCheck

Observable Non-
observable

C11
forbidden ERROR OK

C11
allowed OK TOO STRICT



Why is It 
Interesting?

Will My Program Break on This Faulty Processor? @ EMSOFT’19 12



Will My Program Break on This Faulty Processor? @ EMSOFT’19 13

• Multi-core CPU
– Memory consistency models are complex and hard to get right
– Concurrency-related issues are hard to catch

• Examples (related to MCM):
– ARM Read-Read Hazard (recall the first slide)
– Early version of RISC-V (revealed by TriCheck)

– Same address load occasionally reordered (can be fixed from compiler)
– Lack of cumulative lightweight/heavyweight fences (must change ISA)
– Some faults can be kept dormant by rewriting software

• Custom, purpose-built microprocessors (ASIC)
– Mass produced from customer-specified designs

Faulty Processors are with Us



Will My Program Break on This Faulty Processor? @ EMSOFT’19 14

Customer 
• Return to vendor?

– I provided the design…
• Fix from software?

– Which part is affected?
– Is it affected in the first place?
– What would be a good patch?

Use Cases

…but I use it in an embedded
system with only one program.

I bought 100 000 processors
and they turn out to be faulty…

Vendor 
• Produce another 100 000?

– What if it can be fixed from SW?
• I have to provide tooling

– To diagnose programs
– Locate fault activations
– Patch automatically



Will My Program Break on This Faulty Processor? @ EMSOFT’19 15

• This should be a simple model checking problem… 
– Check if the program does something like the fault-detecting litmus test

• …or is it?

– Very few tools handle weak memory models in the first place
– Those that do have hard-coded semantics
– An ideal tool would take the (flawed) semantics as input as well

Theoretically

x := 2

x := 1

r1 := x

r2 := x

x := 2

x := 1

r1 := x

r2 := x

y := 1 r1 := yIs it still
faulty?



Will My Program Break on This Faulty Processor? @ EMSOFT’19 16

• This should be a simple model checking problem… 
– Check if the program does something like the fault-detecting litmus test

• …or is it?

– Very few tools handle weak memory models in the first place
– Those that do have hard-coded semantics
– An ideal tool would take the (flawed) semantics as input as well

Theoretically

x := 2

x := 1

r1 := x

r2 := x

x := 2

x := 1

r1 := x

r2 := x

y := 1 r1 := yIs it still
faulty?

This is currently not feasible with off-the-shelf tools



Formal 
Description

Will My Program Break on This Faulty Processor? @ EMSOFT’19 17



Will My Program Break on This Faulty Processor? @ EMSOFT’19 18

Fundamental Concepts x := 2

x := 1

r1 := x

r2 := x

Microarchitecturally
Happens-Before Graph

Based on verification results of TriCheck

(Consistent)
Execution Graph

W(x, 0)

W(x, 1)

W(x, 2)

R(x)

R(x)

rf

rf

rf: reads from r1=1 & r2=1
Based on M. Kokologiannakis et al: Effective stateless model checking for C/C++ concurrency. POPL 2017



Will My Program Break on This Faulty Processor? @ EMSOFT’19 19

Overview of Main Ideas (see paper for details)

ProgramLitmus test

Candidate Abstractions

Extend with any dependency
s.t. fault still activates

(based on μArch happens-before graph)

Fault-Activating Exec. 
Graphs

Consistently add any instruction
without introducing dependencies
between litmus test instructions

Control-Consistent 
Execution Graphs

Possible execution graph
over arbitrary MCMs

(may as well read from the future)

∩
Fault-Activcating
Exec. Graphs of 

the Program



Will My Program Break on This Faulty Processor? @ EMSOFT’19 20

Overview of Main Ideas (see paper for details)

Program

Control-Consistent 
Execution Graphs

Some execution graphs will
use the MCM of interest

Litmus test

Candidate Abstractions

Here we consider the 
specificities of the HW

Fault-Activating Exec. 
Graphs

Generalize to any execution
graph that activates the fault

Fault-Activcating
Exec. Graphs of 

the Program

In the intersection:
Activates fault & 

belongs to program



(Lack of) 
Solutions

Will My Program Break on This Faulty Processor? @ EMSOFT’19 21



Will My Program Break on This Faulty Processor? @ EMSOFT’19 22

In the paper, we proposed an exact solution
• Building on:

– C. Trippel et al: TriCheck: Memory Model Verification at the Trisection of Software, Hardware, 
and ISA, ASPLOS 2017

– M. Kokologiannakis et al: Effective stateless model checking for C/C++ concurrency.
POPL 2017

• Idea:
– Reduce to pattern matching on consistent execution graphs
– Iteratively refine matches by considering the HW model

• Stated and proved:
For every fault activating execution there is a correct execution 

that differs only in the incorrect memory operations.

Theoretical (Imaginary) Exact Solution



Will My Program Break on This Faulty Processor? @ EMSOFT’19 23

Also attempted to implement with off-the-shelf model
checkers
• Lack of support for weak memory models

→ Incomplete solution (weakly consistent executions are not explored)
• Even in the subset of sequentially consistent behaviors…

– Pattern matching is OK
– (although not easy)

– We do not know whether the fault still activates
without considering the HW model

→ Either under-approximate or over-approximate

Lack of Solutions with Model Checkers

x := 2

x := 1

r1 := x

r2 := x

y := 1 r1 := y

We chose this to show actual problems



Will My Program Break on This Faulty Processor? @ EMSOFT’19 24

How good are model checkers in parametric pattern-matching
of multi-threaded behaviors on a state space?
• We created very simple test programs
• Parameterized by #threads, #shared variables, #litmus tests
• Method: 

– Generate finite state automata from litmus tests
– Look for accepting runs on state space

• Tools:
– spin: explicit model checker with partil order reduction
– nuXmv: symbolic model checker based on SAT/SMT solvers

Performance



Will My Program Break on This Faulty Processor? @ EMSOFT’19 25

How good are model checkers in parametric pattern-matching
of multi-threaded behaviors on a state space?

Performance
sp

in
nu

X
m

v

Exponential
Y axes



Will My Program Break on This Faulty Processor? @ EMSOFT’19 26

How good are model checkers in parametric pattern-matching
of multi-threaded behaviors on a state space?

Performance
Ex

ec
ut

io
n

ti
m

e

M
em

or
y

us
ag

e

nuXmv
better

nuXmv
better



Will My Program Break on This Faulty Processor? @ EMSOFT’19 27

Will My Program Break on This Faulty Processor?
– Focus: Memory Consistency Models

Detection of Fault Activations
– Localization, patch generation

Compute Fault-Activating Execution Graphs of 
Program

– Fault described by litmus test
– Harware model used to analyze activation

No Off-the-Shelf Solutions
– Proposed theoretical solution
– Today’s model checkers not yet capable

Conclusions

Use Cases

Formally

Problem

Solutions?


	Will My Program Break on This Faulty Processor?��Formal Analysis of Hardware Fault Activations in Concurrent Embedded Software
	Authors & Acknowledgments
	Overview
	What is the Problem?
	Motivation
	Theoretical Question
	Focus: Memory Consistency Models
	Focus: Memory Consistency Models
	Focus: Memory Consistency Models
	Focus: Memory Consistency Models
	Foundations: TriCheck
	Why is It Interesting?
	Faulty Processors are with Us
	Use Cases
	Theoretically
	Theoretically
	Formal Description
	Fundamental Concepts
	Overview of Main Ideas (see paper for details)
	Overview of Main Ideas (see paper for details)
	(Lack of) Solutions
	Theoretical (Imaginary) Exact Solution
	Lack of Solutions with Model Checkers
	Performance
	Performance
	Performance
	Conclusions

