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Overview



What is the 
Problem?
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Motivation

ARM Cortex A9

1. STORE(x, 1, rel);
2. STORE(x, 2, rel);

1. r1 = LOAD(x, rel);
2. r2 = LOAD(x, rel);

x = 0;

Forbidden: r1 = 2 && r2 = 1

Undetected for 3 years after release

Happens ~80 times in a billion runs

Patched by
compiler mappings
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• Sounds similar to concurrency issues
– Nondeterministic activation – hard to catch
– But: activation of HW fault vs. coding error
– Programmer’s assumptions are violated

– …and most analysis tools’ assumptions as well

Theoretical Question

…but I plan to ever run only
a single application on it

If I have a processor with
some known problem…

Will My Program Break on This Faulty Processor?

Programmer View

System View

vs.
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• A Memory Consistency Model (MCM) defines
– How to order memory operations
– Issued asynchronously by CPU cores
– To serialize them for the shared memory

Focus: Memory Consistency Models

x := 2

y := 1

r1 := y

r2 := x

Intuitive:
Sequential Ordering

𝒓𝒓𝒓𝒓 = 𝒓𝒓 ⇒ 𝒓𝒓𝒓𝒓 = 𝒓𝒓

Litmus test:
Illustrates the

guarantees of an MCM

x := 2

y := 1

r1 := y

r2 := x

r1=1 
r2=2

x := 2

y := 1

r1 := y

r2 := x

r1=0 
r2=2
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𝒓𝒓𝒓𝒓 = 𝒓𝒓 ⇒ 𝒓𝒓𝒓𝒓 = 𝒓𝒓

x := 2

x := 1

r1 := x

r2 := x
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• A Memory Consistency Model (MCM) defines
– How to order memory operations
– Issued asynchronously by CPU cores
– To serialize them for the shared memory

Focus: Memory Consistency Models

Intuitive:
Sequential Ordering

𝒓𝒓𝒓𝒓 = 𝒓𝒓 ⇒ 𝒓𝒓𝒓𝒓 = 𝒓𝒓

Fast:
Weak Ordering

Litmus test:
Illustrates the

guarantees of an MCM

x := 2

y := 1

r1 := y

r2 := x

x := 2

y := 1

r1 := y

r2 := x

Thread A 
“sees”:

x := 2

y := 1

r1 := y

r2 := x

Thread B 
“sees”:
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• A Memory Consistency Model (MCM) defines
– How to order memory operations
– Issued asynchronously by CPU cores
– To serialize them for the shared memory

Focus: Memory Consistency Models

Intuitive:
Sequential Ordering

𝒓𝒓𝒓𝒓 = 𝒓𝒓 ⇒ 𝒓𝒓𝒓𝒓 = 𝒓𝒓

Fast:
Weak Ordering

𝒓𝒓𝒓𝒓 = 𝒓𝒓 ⇒ 𝒓𝒓𝒓𝒓 = 𝒓𝒓

x := 2

r1 := y

y := 1

r2 := x

Middle ground:
Total Store Order

𝒓𝒓𝒓𝒓 = 𝒓𝒓 ⇏ 𝒓𝒓𝒓𝒓 = 𝒓𝒓

Litmus test:
Illustrates the

guarantees of an MCM

x := 2

y := 1

r1 := y

r2 := x

x := 2

x := 1

r1 := x

r2 := x



x := 2

r1 := y

y := 1

r2 := x
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Intuitive:
Sequential Ordering

𝒓𝒓𝒓𝒓 = 𝒓𝒓 ⇒ 𝒓𝒓𝒓𝒓 = 𝒓𝒓

Fast:
Weak Ordering

𝒓𝒓𝒓𝒓 = 𝒓𝒓 ⇒ 𝒓𝒓𝒓𝒓 = 𝒓𝒓

Middle ground:
Total Store Order

𝒓𝒓𝒓𝒓 = 𝒓𝒓 ⇏ 𝒓𝒓𝒓𝒓 = 𝒓𝒓

Litmus test:
Illustrates the

guarantees of an MCM

x := 2

y := 1

r1 := y

r2 := x

x := 2

x := 1

r1 := x

r2 := x

Cores observe
same order

Different cores may observe
different orders for other cores
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C. Trippel et al: TriCheck: Memory Model Verification at the 
Trisection of Software, Hardware, and ISA, ASPLOS 2017
• Formal verification of MCM implementations

– Specification: C11 memory model
• Method: check feasibility of forbidden outcomes of litmus 

tests
– Analyzes dependencies between pipeline stages of different operations

– Compiler
– Virtual Memory
– Instruction Set Architecture (ISA)
– Hardware implementation

• Applied on early RISC-V design and revealed 100+ problems

Foundations: TriCheck

Observable Non-
observable

C11
forbidden ERROR OK

C11
allowed OK TOO STRICT



Why is It 
Interesting?
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• Multi-core CPU
– Memory consistency models are complex and hard to get right
– Concurrency-related issues are hard to catch

• Examples (related to MCM):
– ARM Read-Read Hazard (recall the first slide)
– Early version of RISC-V (revealed by TriCheck)

– Same address load occasionally reordered (can be fixed from compiler)
– Lack of cumulative lightweight/heavyweight fences (must change ISA)
– Some faults can be kept dormant by rewriting software

• Custom, purpose-built microprocessors (ASIC)
– Mass produced from customer-specified designs

Faulty Processors are with Us
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Customer 
• Return to vendor?

– I provided the design…
• Fix from software?

– Which part is affected?
– Is it affected in the first place?
– What would be a good patch?

Use Cases

…but I use it in an embedded
system with only one program.

I bought 100 000 processors
and they turn out to be faulty…

Vendor 
• Produce another 100 000?

– What if it can be fixed from SW?
• I have to provide tooling

– To diagnose programs
– Locate fault activations
– Patch automatically
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• This should be a simple model checking problem… 
– Check if the program does something like the fault-detecting litmus test

• …or is it?

– Very few tools handle weak memory models in the first place
– Those that do have hard-coded semantics
– An ideal tool would take the (flawed) semantics as input as well

Theoretically

x := 2

x := 1

r1 := x

r2 := x

x := 2

x := 1

r1 := x

r2 := x

y := 1 r1 := yIs it still
faulty?
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• This should be a simple model checking problem… 
– Check if the program does something like the fault-detecting litmus test

• …or is it?

– Very few tools handle weak memory models in the first place
– Those that do have hard-coded semantics
– An ideal tool would take the (flawed) semantics as input as well

Theoretically

x := 2

x := 1

r1 := x

r2 := x

x := 2

x := 1

r1 := x

r2 := x

y := 1 r1 := yIs it still
faulty?

This is currently not feasible with off-the-shelf tools



Formal 
Description
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Fundamental Concepts x := 2

x := 1

r1 := x

r2 := x

Microarchitecturally
Happens-Before Graph

Based on verification results of TriCheck

(Consistent)
Execution Graph

W(x, 0)

W(x, 1)

W(x, 2)

R(x)

R(x)

rf

rf

rf: reads from r1=1 & r2=1
Based on M. Kokologiannakis et al: Effective stateless model checking for C/C++ concurrency. POPL 2017
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Overview of Main Ideas (see paper for details)

ProgramLitmus test

Candidate Abstractions

Extend with any dependency
s.t. fault still activates

(based on μArch happens-before graph)

Fault-Activating Exec. 
Graphs

Consistently add any instruction
without introducing dependencies
between litmus test instructions

Control-Consistent 
Execution Graphs

Possible execution graph
over arbitrary MCMs

(may as well read from the future)

∩
Fault-Activcating
Exec. Graphs of 

the Program
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Overview of Main Ideas (see paper for details)

Program

Control-Consistent 
Execution Graphs

Some execution graphs will
use the MCM of interest

Litmus test

Candidate Abstractions

Here we consider the 
specificities of the HW

Fault-Activating Exec. 
Graphs

Generalize to any execution
graph that activates the fault

Fault-Activcating
Exec. Graphs of 

the Program

In the intersection:
Activates fault & 

belongs to program



(Lack of) 
Solutions
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In the paper, we proposed an exact solution
• Building on:

– C. Trippel et al: TriCheck: Memory Model Verification at the Trisection of Software, Hardware, 
and ISA, ASPLOS 2017

– M. Kokologiannakis et al: Effective stateless model checking for C/C++ concurrency.
POPL 2017

• Idea:
– Reduce to pattern matching on consistent execution graphs
– Iteratively refine matches by considering the HW model

• Stated and proved:
For every fault activating execution there is a correct execution 

that differs only in the incorrect memory operations.

Theoretical (Imaginary) Exact Solution
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Also attempted to implement with off-the-shelf model
checkers
• Lack of support for weak memory models

→ Incomplete solution (weakly consistent executions are not explored)
• Even in the subset of sequentially consistent behaviors…

– Pattern matching is OK
– (although not easy)

– We do not know whether the fault still activates
without considering the HW model

→ Either under-approximate or over-approximate

Lack of Solutions with Model Checkers

x := 2

x := 1

r1 := x

r2 := x

y := 1 r1 := y

We chose this to show actual problems
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How good are model checkers in parametric pattern-matching
of multi-threaded behaviors on a state space?
• We created very simple test programs
• Parameterized by #threads, #shared variables, #litmus tests
• Method: 

– Generate finite state automata from litmus tests
– Look for accepting runs on state space

• Tools:
– spin: explicit model checker with partil order reduction
– nuXmv: symbolic model checker based on SAT/SMT solvers

Performance
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How good are model checkers in parametric pattern-matching
of multi-threaded behaviors on a state space?

Performance
sp

in
nu

X
m

v

Exponential
Y axes
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How good are model checkers in parametric pattern-matching
of multi-threaded behaviors on a state space?

Performance
Ex

ec
ut

io
n

ti
m

e

M
em

or
y

us
ag

e

nuXmv
better

nuXmv
better
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Will My Program Break on This Faulty Processor?
– Focus: Memory Consistency Models

Detection of Fault Activations
– Localization, patch generation

Compute Fault-Activating Execution Graphs of 
Program

– Fault described by litmus test
– Harware model used to analyze activation

No Off-the-Shelf Solutions
– Proposed theoretical solution
– Today’s model checkers not yet capable

Conclusions

Use Cases

Formally

Problem

Solutions?
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